Домой Венерические болезни Разнообразие существующих форм жизни. Биология в лицее

Разнообразие существующих форм жизни. Биология в лицее

. В процессе исторического развития живые организмы освоили четыре среды обитания. Первая –водная. В воде жизнь зародилась и развивалась многие миллионы лет. Вторая- наземно-воздушная- на суше и в атмосфере возникли и бурно адаптировались к новым условиям растения и животные. Постепенно преобразуя верхний слой суши- литосферу, они создали третью среду обитания- почву, а сами стали четвёртой средой обитания.

Биосфера- оболочка нашей Земли, где обитают живые организмы, это совокупность всех биогеоценозов. Верхняя граница биосферы поднимается на высоту до 20 км (озоновый экран) и опускается до глубины 10-11км в Мировом океане. Предлагаю заслушать результаты ваших исследований в порядке появления данной среды обитания на Земле.

Скачать:


Предварительный просмотр:

О ткрытый урок в 9 классе на тему: «Многообразие форм живых организмов».

Цели урока:

Углубить знания о биосфере- оболочке, где обитают живые организмы;

Дать представление об условиях обитания организмов в почве, воде, в наземно-воздушной среде, в других организмах;

Развивать умение сравнивать условия жизни организмов, находить формы приспособленности организмов к этим условиям;

Воспитывать понимание необходимости исследования разнообразия форм жизни как следствия разнообразия условий существования на Земле.

Оборудование:

Аквариум с рыбками, моллюсками, водорослями;

Гербарии водорослей, растений различных экологических систем, коллекции моллюсков, насекомых и их личинок;

Проектор

Предварительная подготовка :

Перед уроком учащиеся получают задание провести исследования различных сред обитания организмов, выявить формы приспособленности к той или иной среде, составить презентацию.

Ход урока

  1. Повторение изученного материала . (работа в группах)

Запи шите признаки и свойства живых организмов (обмен веществ, самовоспроизведение, саморегуляция, клеточное строение, раздражимость, приспособленность к среде обитания рост и развитие, эволюционное развитие).

Как вы знаете разделы биологии (анатомия,физиология, ботаника, зоология, бриология, альгеология, миология, микология,палеонтология, энтомология, орнитология, экология).

Распределите в порядке усложнения уровни организации живых организмов (молекулярный, клеточный, организменный, популяционно-видовой, биогеоценотический, биосферный).

Заполните в таблиц е данные об условиях жизни организмов в той среде обитания, которую вы исследовали, используя слова: много,мало,нет.

Среда обитания

Воздух

Вода

Свет

Водная

мало

много

мало

Наземно-воздушная

много

мало

много

Почвенная

мало

мало

нет

Организменная

нет

мало

нет

Учитель. В процессе исторического развития живые организмы освоили четыре среды обитания. Первая –водная. В воде жизнь зародилась и развивалась многие миллионы лет. Вторая- наземно-воздушная- на суше и в атмосфере возникли и бурно адаптировались к новым условиям растения и животные. Постепенно преобразуя верхний слой суши- литосферу, они создали третью среду обитания- почву, а сами стали четвёртой средой обитания.

Биосфера- оболочка нашей Земли, где обитают живые организмы, это совокупность всех биогеоценозов. Верхняя граница биосферы поднимается на высоту до 20 км (озоновый экран) и опускается до глубины 10-11км в Мировом океане. Предлагаю заслушать результаты ваших исследований в порядке появления данной среды обитания на Земле.

Ученик. Гидросфера- водная оболочка Земли. Она составляет около 71% поверхности планеты, расположена между атмосферой и земной корой. Живые организмы, обитающие в воде, называются гидробионтами.

Характеристика среды

Водная среда

животные

1.Плотность

средняя

Обтекаемая форма тела, планктон

2.Освещённость

средняя

Плохое зрение

3.Колебание температуры

средняя

Сглажена широтная зональность

4.Количество воды

много

Удаляют аммиак

5.Количество кислорода

умеренно

холоднокровные

Живые организмы способны жить в плотной среде с малым количеством кислорода и света. Приэ том в водной среде нет резких перепадов температуры. Наибольшее количество организмов обитает на небольшой глубине, т.к. они получают больше тепла и света.

Организмы,населяющие толщу воды, называются планктоном. Организмы, обитающие на дне или прикреплённые ко дну, называются бентосом.

Водные организмы составляют 0,13% биомассы всех живых существ, обитающих на Земле.

Вывод: изучив условия водной среды обитания мы выяснили, что животные имеют следующие приспособления: обтекаемую форму тела, плавучесть, слизистые покровы тела, видоизменённые конечности, специальные органы дыхания-жабры, защитную окраску.

Учитель: послушаем про условия существования организмов в почве.

Ученик.

Наиболее сложными для существования являются условия литосферы- твёрдой оболочки Земли.

Характеристика среды

Почвенная среда

животные

1.Плотность

Очень высокая

Проникновение на малую глубину

2.Освещённость

отсутствует

Недоразвито зрение

3.Колебание температуры

слабые

Переживание неблагоприятных условий, замедляется обмен веществ

4.Количество воды

умеренное

Участвует в процессах жизнедеятельности

5.Количество кислорода

мало

Малая подвижность

Плотные частицы, отсутствие света затрудняют передвижение организмов в поисках пищи. На поверхности литосферы располагается почва. Это плодородный слой, на котором обитают растения, он изменяется под воздействием атмосферы и организмов. Живые организмы распределяются в основном на глубине от 0 до 7 метров, но отдельные виды способны существовать на глубине до 100 метров. Верхняя часть литосферы состоит из осадочных пород. С почвой связана жизнь растений. В ней располагаются и укрепляются их корни. Из почвы они получают питательные вещества, растворённые в воде. В почве обитает большое количество животных, грибов, бактерий. Обитателей почвы называют эдафобионтами.

Ученик. Мы провели исследование жизни крота.

Кроты относятся к отряду насекомоядных млекопитающих. Они редко попадают к нам на глаза, обычно мы видим следы их работы- кучи рыхлой почвы, которые они выбрасывают, к огда строят свои многочисленные ходы-лабиринты.

Всё строение крота говорит о высокой приспособленности к жизни в почве.

Гладкая бархатистая и очень густая шерсть защищает крота от комочков почвы. Кроме того, шерстинки его покрова могут ложиться как вперёд. Так и назад. Это помогает быстро продвигаться по подземным ходам. Глаза крота очень малы и закрыты шерстинками. Особенности строения передних конечностей позволяет кроту подземное жилище. Плечо и предплечье короткие, а кисти большие, хорошо развиты. С помощью их он разгребает землю и быстро продвигается вперёд. Кротовина с жильём имеет округлую форму, выстлана сухой травой или мхом и находится вдали от туннелей, где животные охотятся. От гнезда крот прорывает выход, который закрывает травой. В случае опасности он быстро уходит по этому подземному коридору. Охотничьи туннели крота, где он собирает червей, жуков, личинок, достигают длины 20 метров. Есть среди подземных коридоров те, которые ведут к воде, она нужна кроту. К зиме кроты уходят на глубину, где почва не промерзает.

Вывод: изучив условия почвенной среды обитания мы выяснили, что животные имеют следующие приспособления для обитания в ней: вольковатая форма тела, малые размеры, прочные покровы тела, кожное дыхание, редукция органов зрения, копательные конечности с развитой мускулатурой.

Учитель. Теперь обратимся к наземно-воздушной среде обитания и её обитателям.

Ученик. В процессе эволюционного развития в связи с уменьшением количества воды на поверхности планеты и установлением более сухого климата организмы приобрели способность жить в наземно-воздушной среде при обилии воздух, недостатке воды и резких колебаниях температуры. Обитатели наземно-воздушной среды называются аэробионтами. Живые организмы способны подниматься на высоту более 10 км, а споры бактерий и грибов- до 20 км

Характеристика среды

Наземно-воздушная среда

животные

1.Плотность

низкая

Большая скорость передвижения, возможен полёт

2.Освещённость

высокая

Развитие зрения

3.Колебание температуры

высокая

Зональность в распределении живых организмов

4.Количество воды

мало

Развиты покровы тела

5.Количество кислорода

много

Интенсивный обмен веществ

Общий прирост биомассы планеты, т.е. продуктивность, приходится на долю растительных сообществ суши и составляет 92,2% общей массы всех живых организмов суши, на животных и микроорганизмы приходится только 0,8%. Аэробионтами являются следующие виды: лишайники, грибы, мхи, папоротники, хвощи, плауны, голосеменные растения, покрытосеменные растения. В животном мире аэробионтами являются следующие организмы: насекомые, пресмыкающиеся, птицы, млекопитающие.

Вывод: изучив условия наземно-воздушной среды обитания мы выяснили, что животные имеют следующие приспособления для обитания в ней: опорный скелет, механизмы терморегуляции, экономный расход воды, быстрые окислительно-восстановительные процессы, развиты органы усвоения атмосферного воздуха, крылья- видоизменённые передние конечности, конечности бегательного, прыгательного и др. типов, разные виды ротовых аппаратов: грызущие, колюще-сосущие, лижущие; защитная окраска тела.

Учитель. Есть ещё одна среда обитания- организменная. Послушаем о ней.

Характеристика среды

Организменная среда

животные

1.Плотность

высокая

Плоская, круглая форма тела

2.Освещённость

отсутствует

Нет суточных ритмов

3.Колебание температуры

слабые

Плохо развита нервная система

4.Количество воды

умеренно

5.Количество кислорода

нет

Анаэробы

Вывод: изучив условия организменной среды обитания мы выяснили, что животные имеют следующие приспособления для обитания в ней: упрощение всех органов, редукция некоторых из них, появление органов прикрепления, высокая плодовитость, сложные циклы развития со сменой хозяев.

2. Подведение итогов урока .

(учитель подводит итоги урока, выставляет оценки).

3. Домашнее задание .


Учитель биологии: Касаткина Марина Александровна.
ГБОУ КК школа-интернат для одарённых детей им. В.Г. Захарченко.

Тема: «Многообразие форм живых организмов».

Предмет: Биология.

Класс : 9.

Базовый учебник : Пономарёва И.Н., Чернова Н.М., Корнилова О.А. Биология 9 класс (ВЕНТАНА-ГРАФ).

Цели урока :

    обобщить и закрепить знания учащихся о многообразии форм живых организмов;

    определить биологическое значение всех царств живой природы для сохранения биосферы;

    сформировать познавательный интерес на изучение живой природы;

    сформировать у учащихся представление о единстве мира и ценности жизни во всех ее проявлениях

Задачи :

- обучающие

    повторить и закрепить понятия царства живой природы;

    сформировать значение биологического разнообразия для сохранения биосферы;

    с формировать познавательный интерес на изучение живой природы;

- развивающие : создание условий для развития приемов мышления (анализ, синтез, систематизация, обобщение, умение делать выводы); умение аргументировать свою позицию (коммуникативная компетентность); умение работать с источником биологической информации; умение решать проблемную ситуацию;

- воспитательные: создание условий для воспитания активности и самостоятельности, убежденности в познаваемости мира.

Тип урока : изучение нового материала.

Форма организации учебной деятельности : коллективная

Методы обучения : словесные, наглядные.

Оформление и оборудование: учебник, компьютер, мультимедиапроектор, презентация «Уровни организации жизни», образовательный комплекс 1С: Школа. Биология, 9 кл.

Ход урока:

    Организационный момент.

Постановка целей и задач урока, организация учащихся.

    Проверка домашнего задания.

    Какие свойства присущи всем живым организмам?

    Назовите основные химические элементы живого?

    Дайте определение «жизнь».

    Актуализация опорных знаний.

Учитель: Какие царства живой природы вы знаете?
Ученики: Растения, Животные, Грибы, Бактерии.

    Изучение нового материала:

1.Царства живой природы.

На экране появляется схема.

Учитель: Какое царство отсутствует на схеме?
Ученики : Царство Вирусы.

2. Формы жизни.

Учитель: Какие бывают формы жизни?
Ученики : Клеточная и неклеточная.

3.Экологические группы организмов.

Учитель : Назовите среды жизни. Какие организмы их населяют?
Ученики : водная, наземная, почвенная и организменная.
На экране появляется таблица.

4.Уровни организации живой материи.
Учитель
: Мы рассмотрели с вами царства живой природы; среды жизни организмов.
А теперь предлагаю посмотреть презентацию Уровни организации жизни.

Уровень - это функциональное место биологической структуры определённой степени сложности в общей иерархии живого.

    Молекулярно-генетический уровень представлен отдельными биополимерами (ДНК, РНК, белками, липидами, углеводами и другими соединениями);
    на этом уровне жизни изучаются явления, связанные с изменениями (мутациями) и воспроизведением генетического материала, обменом веществ.

    Субклеточный- представлен органоидами: ЭПС, АГ, рибосомы и т.д..

    Клеточный – уровень, на котором жизнь существует в форме клетки – структурной и функциональной единицы жизни.
    На этом уровне изучаются такие процессы, как обмен веществ и энергии, обмен информацией, размножение, фотосинтез, передача нервного импульса и многие другие.

    Органно - тканевой - представлен тканями и органами;
    -ткань - совокупность клеток, сходных по строению и функциям, связанных межклеточным веществом;
    -орган - часть многоклеточного организма, выполняющая определённую функцию.

    Организменный – это самостоятельное существование отдельной особи – одноклеточного или многоклеточного организма;
    организм - неделимая единица жизни, её реальный носитель, характеризующийся всеми её признаками;
    биосистема - живая система.

    Популяционно-видовой – уровень, который представлен группой особей одного вида – популяцией; именно в популяции происходят элементарные эволюционные процессы – накопление, проявление и отбор мутаций;
    -популяция - совокупность особей одного вида, образующих обособленную генетическую систему, которая длительно существует в определённой части ареала, относительно обособленно от других особей вида;
    -вид - совокупность особей(популяций особей), способных к скрещиванию с образованием плодовитого потомства и занимающих определённый ареал.

    Биоценотический - представлен биоценозами
    -биоценоз – это совокупность популяций разных видов, обитающих на определённой территории.

    Биогеоценотический – представлен экосистемами, состоящими из разных популяций и среды их обитания;
    -биогеоценоз -совокупность биоценозов и абиотических факторов среды (климат, почва).

    Биосферный – уровень, представляющий совокупность всех биогеоценозов. В биосфере происходит круговорот веществ и превращение энергии с участием организмов. Продукты жизнедеятельности организмов участвуют в процессе эволюции Земли.

IV .Закрепление.
Учитель:
1.К какому царству относят цианобактерий? Какая это форма жизни?
2.Дрожжи и трутовик представители какого царства? К какой форме жизни они относятся?
3. К какому уровню жизни относятся:
- таёжный лес
- стадо овец
- амёба обыкновенная
- хлоропласт.

VI .Подведение итогов урока.
VII .Домашнее задание.
Параграф 3, вопросы в конце параграфа.

Какие чудеса открылись бы человеку,
будь его глаза способны разглядеть
очертания и движения мельчайших
частиц в крови и других жидкостях
организмов столь же отчетливо, как
очертания и движения самих живых
существ.
Дж. Локк

Чем различаются клетки животных и клетки растений? Каковы особенности организации и функционирования одноклеточных эукариот и клеток в составе многоклеточного организма? Как устроены клетки прокариот? Что представляют собой вирусы?

Урок-лекция

РАЗЛИЧИЯ В СТРОЕНИИ ЖИВОТНЫХ И РАСТИТЕЛЬНЫХ КЛЕТОК . Описание общего плана строения клетки эукариот в основном рассмотрено на примере животной клетки. Организация растительной клетки имеет некоторые свои специфические черты (рис. 44). Снаружи она одета клеточной стенкой, которая состоит из целлюлозы.

Рис. 44. Строение растительной клетки

Наличие плотной клеточной стенки препятствует образованию перетяжки при делении цитоплазмы клетки в телофазе митоза, как это было описано в § 32. Деление цитоплазмы на две части при митозе растительных клеток происходит путем формирования плазматической мембраны и клеточной стенки прямо внутри делящейся клетки - от центра к периферии.

В состав растительных клеток входят особые органеллы - пластиды . Они окружены не менее чем двумя мембранами, содержат короткую кольцевую ДНК, рибосомы и способны к самостоятельному делению. В функциональном отношении большинство разновидностей пластид так или иначе связаны с энергетикой клетки. В первую очередь это хлоропласты, в которых осуществляются реакции фотосинтеза.

Хлоропласты содержат хлорофилл, каротиноиды и необходимые для фотосинтеза белки. Хромопласты не содержат хлорофилла, но обогащены каротиноидами - желтыми, оранжевыми и красными пигментами, которые определяют окраску цветов, плодов и некоторых корнеплодов (морковь). И наконец, лейкопласты бесцветны. В некоторых из них может синтезироваться и накапливаться крахмал, в других - запасы жира и белка. Лейкопласты при определенных условиях могут превращаться в хлоропласты и хромопласты, а хлоропласты - в хромопласты. С последним процессом связано осеннее изменение окраски листьев.

Вспомним, что целлюлоза - это полисахарид, молекулы которого образуют тончайшие нити. Связь между соседними клетками у многоклеточных растений осуществляется благодаря тонким тяжам цитоплазмы, пронизывающим неуплотненные участки клеточной стенки.

В типичной растительной клетке имеется одна или несколько центральных вакуолей , которые при сильном развитии могут вытеснять все остальное содержимое клетки на периферию. Вакуоли окружены мембраной, а их внутреннее содержимое сильно варьирует в клетках разных типов. Это могут быть запасные питательные вещества (сахара, растворимые белки), растворы необходимых клетке солей, аминокислоты и др. В вакуоли же выводятся и вредные продукты, образующиеся в результате обмена веществ, например щавелевая кислота.

В вакуолях накапливаются и пигменты - антоцианы, которые могут придавать растениям широкий спектр оттенков - от розового до чернофиолетового.

Антоцианы обеспечивают голубую и красную окраску плодов (слива, вишня, виноград, брусника, земляника) и лепестков цветков (василек, герань, роза, пион). Кроме того, именно они окрашивают осенние листья в ярко-красный цвет.

Растительная клетка имеет принципиально то же строение, что и животная. Отличительной особенностью растительной клетки является наличие клеточной стенки, пластид и вакуолей.

КЛЕТКА КАК ОРГАНИЗМ И КЛЕТКА В СОСТАВЕ ОРГАНИЗМА . Вы уже знаете, что клетка может функционировать как самостоятельный организм или входить в состав многоклеточного организма или колонии. Во всех этих случаях клетки обладают специфическими чертами в своей организации. У одноклеточных эукариот имеются органеллы, которые необходимы им для самостоятельного существования и которые никогда не встречаются у клеток многоклеточных организмов. Это могут быть пигментные глазки, жгутики и реснички, клеточный рот (особый участок цитоплазмы, которым отдельные хищные простейшие захватывают добычу) и многое другое.

Основная черта клеток, формирующих многоклеточный организм, заключается в их специализации. Особенно отчетливо это проявляется на тканевом уровне организации высших растений и животных. Клетки каждой ткани строго дифференцированы, т. е. приспособлены к выполнению какой-либо одной основной функции или немногих функций, что определяет и их структурные особенности. Более того, такие клетки, как правило, теряют способность к размножению. Они функционируют определенное время, а затем погибают. В большинстве тканей имеется некоторый запас способных к делению недифференцированных клеток. Они производят новые клетки, которые, пройдя определенный этап дифференциации, заменяют собой погибшие клетки данной ткани.

Клетки одноклеточных эукариот, помимо обычного набора органелл, обладают рядом специфичных структур, обеспечивающих их существование как самостоятельных организмов. В составе тканей клетки приспособлены к выполнению определенных функций. Эта специализация необратима, и пополнение тканей новыми клетками происходит в результате деления и последующей специализации недифференцированных клеток.

СПЕЦИФИКА КЛЕТКИ ПРОКАРИОТ . Бактериальная клетка принципиально отличается от рассмотренных нами клеток эукариотических организмов. Различия эти касаются отнюдь не размеров, которые для большинства бактерий составляют 1 - 10 мкм. Это вполне сопоставимо с размерами некоторых типов клеток эукариот. А вот строение и связанные с этим особенности функционирования бактериальной клетки оказываются совершенно иными (рис. 45).

Рис. 45. Строение бактериальной клетки

Прежде всего у бактерий отсутствует не только оформленное ядро, но и все остальные органеллы. Различия обнаруживаются и в строении мембраны, окружающей клетку бактерии. Вещества попадают в бактерию и выводятся из нее только благодаря диффузии.

Надмембранные структуры бактерий формируют вокруг них жесткую клеточную стенку. Она обладает избирательной проницаемостью. Поверх клеточной стенки бактерии формируют еще и слизистую капсулу, которая служит дополнительной защитой от неблагоприятных факторов среды, в том числе предохраняет от высыхания. В цитоплазме бактерий отсутствует цитоскелет.

Некоторые бактерии снабжены жгутиком, который не имеет ничего общего ни по строению, ни по особенностям функционирования с одноименной структурой эукариот.

Наконец, генетический аппарат бактерий, так называемый нуклеоид, представлен замкнутой в кольцо молекулой ДНК, которая свободно лежит в цитоплазме. Нуклеоид прикреплен к внутренней стороне бактериальной мембраны. Перед началом деления бактерии происходит удвоение кольцевой ДНК, и два образовавшихся нуклеоида «разъезжаются» по мембране в разные стороны. Затем мембрана и клеточная стенка впячиваются и перешнуровывают бактериальную клетку надвое. В каждой из образовавшихся клеток оказывается свой нуклеоид.

Клетки прокариот лишены оформленного ядра и клеточных органелл. Снаружи бактерию окружают плотная клеточная стенка и капсула, у некоторых видов имеется жгутик. Генетический аппарат прокариот представлен кольцевой молекулой ДНК, репликация которой предшествует делению бактерии.

НЕКЛЕТОЧНАЯ ФОРМА ЖИЗНИ - ВИРУСЫ . Впервые о существовании вирусов узнали в 1892 г., когда русский ботаник Д. И. Ивановский обнаружил, что заболевание табака - табачную мозаику вызывает возбудитель, проходящий через бактериальные фильтры, т. е. он существенно меньше бактерий по размеру. Действительно, размеры большинства вирусов варьируют в пределах 15-300 нм. В простейшем случае вирус состоит из небольшой молекулы ДНК или РНК, окруженной защитной белковой оболочкой - капсидом (рис. 46).

Рис. 46. Строение вируса табачной мозаики: а - РНК; б - капсид

Вирус способен существовать длительное время и при широком диапазоне внешних условий. Однако самостоятельно воспроизводить себя вирусы не могут, поскольку не содержат тех структур и ферментов, которые обеспечивают процессы, связанные с репликацией нуклеиновых кислот и биосинтезом белков. Поэтому основная задача вируса - это попасть в клетку-хозяина. Процесс этот может происходить случайно, например с жидкостью при пиноцитозе. Однако большинство вирусов способны распознавать именно те клетки, в которых они могут воспроизводиться.

Оказавшись в клетке-хозяине, вирусная ДНК начинает реплицироваться.

С нее также считывается информация в виде мРНК, которая поступает на рибосомы, где и осуществляется синтез вирусных белков. В случае РНК-содержащих вирусов вирусная РНК многократно реплицируется и сама играет роль мРНК. По мере наработки белков капсида и нуклеиновых кислот вируса в цитоплазме клетки-хозяина происходит сборка вирусных частиц. Их накопление ведет к гибели клетки-хозяина, она разрывается, и вирусные частицы выходят во внешнюю среду.

Однако последовательность событий, следующих за проникновением вируса в клетку-хозяина, может быть и иной. Оказалось, что при определенных обстоятельствах ДНК вируса не приступает к репликации в цитоплазме клетки-хозяина, а встраивается в ее кольцевую ДНК (у бактерий) или в ДНК хромосом (у эукариот). Такая клетка с вирусной ДНК в геноме способна размножаться, причем в каждую дочернюю клетку попадает и ДНК вируса. Затем при каком-то внешнем воздействии (ультрафиолета или радиации) вирусная ДНК выходит из состава генома клетки-хозяина и приступает к производству вирусных частиц по описанной выше схеме.

Способность ДНК вирусов встраиваться в геном клетки имеет целый ряд серьезных последствий. Дело в том, что при выходе ДНК вируса из хромосомы или нуклеоида она может захватывать и прилежащие участки (гены) ДНК хозяина. Затем вместе с вирусной ДНК эти участки могут встраиваться в геном клеток другой особи (или даже особи другого вида), в которую проникнет вирус. Такой «горизонтальный» перенос генетического материала (в отличие от «вертикального» - от родителей детям) играет важную роль в эволюции организмов.

Вирусные ДНК и РНК могут нести онкогены - гены, которые при встраивании в геном клетки преобразуют ее в раковую. Кроме того, встраивание генетического материала вируса в ДНК клетки может провоцировать активацию некоторых ее собственных генов (протоонкогены), что также приводит к перерождению клетки и формированию опухоли.

Вирус представляет собой молекулу ДНК или РНК, окруженную белковой оболочкой. Воспроизводство вирусов возможно только в клетках-хозяевах. Вирусная ДНК способна встраиваться в геном хозяина, что может приводить к явлению горизонтального переноса генетической информации.

Многие вирусы и бактерии гибнут под воздействием ультрафиолетового излучения. Во время эпидемий, вызванных вирусами, полезно проводить кварцевание помещения. При отсутствии соответствующих приборов необходимо регулярно проветривать помещение и делать влажную уборку.

  • Объясните различия в строении растительной и животной клеток.
  • Почему скорость деления бактериальной клетки выше скорости деления клетки эукариот? Какова роль вирусов в биосфере?
  • Почему в процессе эволюции клетки эукариот, а не прокариот заняли господствующее положение и дали начало огромному разнообразию форм жизни?

Существенный вклад в решение вопроса о происхождении жизни внесли академик АН СССР, биохимик А.И. Опарин, английские естествоиспытатели Дж. Бернал, Б.С. Холдейн. Одна из гипотез о происхождении Земли и всей Солнечной системы, заключается в том, что Земля и все планеты сконденсировались из космической пыли и газа, рассеянных вокруг Солнца.

Первичная атмосфера Земли, как и других планет, содержала, по-видимому, метан, аммиак, водяной пар и водород. Вероятно, электрические разряды, световая и ультрафиолетовая радиация еще до образования Земли или на самой первой стадии ее развития способствовали образованию сложных органических веществ.

Химические элементы, являющиеся основными слагаемыми всего живого: кислород, углерод, водород и азот. Их принято называть органогенами . В живой клетке, например, по массе содержится около 70% кислорода, 17% углерода, 10% водорода, 3% азота.

Особая роль в живых организмах принадлежит углероду. На ранней стадии образования органических веществ из неорганических, вероятно, действовал предварительный отбор соединений, из которых появились организмы. Из множества образовавшихся веществ сохранились лишь наиболее устойчивые и способные к дальнейшему усложнению.

Всего лишь 29 сравнительно несложных мономеров достаточно для построения любого живого организма. В число их входят 20 аминокислот, из которых состоят все белки, 5 азотистых оснований (из них в комбинации с другими веществами образуются носители наследственности - нуклеиновые кислоты), а также глюкоза - важнейший источник энергии, необходимой для жизнедеятельности, и жиры - структурный материал мембран клеток и накопитель энергии.

Соединения на основе углерода образовали «первичный бульон» гидросферы. Важнейшую роль в зарождении живых организмов сыграло объединение множества отдельных молекул органических веществ в упорядоченные молекулярные структуры - биополимеры: белки и нуклеиновые кислоты, обладавшие важнейшим биологическим свойством воспроизведения себе подобных. Свободный кислород появился значительно позже углерода в результате фотосинтеза, происходившего вначале в водорослях и бактериях, а затем и в наземных растениях. Бескислородная среда способствовала, по-видимому, синтезу биополимеров: кислород как сильный окислитель разрушал бы их.

В результате объединения несложных органических соединений образовались вначале ферменты - белковые катализаторы, а затем нуклеиновые кислоты - носители наследственной информации. Можно считать, что с этого момента на Земле возникла жизнь. Жизнь - это особая форма существования материи. Характерные особенности жизни - обмен с внешней средой, воспроизведение себе подобных, постоянное развитие и т.п. К концу биохимической стадии развития жизни появились структурные образования - мембраны, сыгравшие важную роль в построении клеток.


Чрезвычайная сложность строения и наблюдаемая целесообразность поведения живых организмов приводили многих к мнению о том, что жизнь – это нечто большее, чем просто физическое и химическое явление. Живые существа по сравнению с объектами неживой природы обладают рядом отличительных свойств, благодаря которым достигается вполне определенная цель. Данная точка зрения лежит в основе витализма – течения в биологии, признающего наличие в организмах нематериальной сверхъестественной силы («жизненной силы», «души» и т. п.), управляющей жизненными явлениями.

Характеризуя отличия живого от неживой материи, кроме уже упомянутой целесообразности, следует назвать и осмысленность действий живых систем. Смысл не может существовать в форме полностью бестелесного «духа». Он исчезает, если не воплощен в некоторой материальной системе, включающей, например, вполне определенную конфигурацию нервных связей в мозгу.

Итак, с весьма большой степенью осторожности можно утверждать: живое – это материальная система, наделенная свойством целесообразности.

Тема Многообразие форм жизни

На поверхности нашей планеты практически нет мест, где не встречалась бы жизнь. Следы ее можно обнаружить и в полярных областях, где температура опускается до минус 80 градусов, и в кипящих гейзерах. Жизнь можно встретить в самой глубокой морской впадине и в атмосфере на высоте в несколько километров. Это пространство, оболочку Земли, где можно встретить жизнь в ее разных формах, называют биосферой – от греческих слов «биос» – «жизнь» и «сфера», что значит «шар».

Биосфера включает в себя нижнюю часть атмосферы, всю гидросферу и поверхностные слои литосферы, почву, которая и образовалась в результате процессов выветривания и жизнедеятельности живых организмов. Каждая из этих оболочек земли имеет свои особые условия, создающие разные среды жизни – водную, наземно-воздушную, почвенную, организменную. Различными особенностями сред жизни обусловлено многообразие форм живых существ и их специфические свойства, которые формировались в процессе приспособления к этим условиям.

Так, живые существа, населяющие водную среду, гидробионты, прекрасно приспособлены к обитанию в плотной и вязкой водной среде: дышат в ней, размножаются, находят пищу и укрытия, передвигаются в разных направлениях в толще воды.

Организмы, населяющие наземно-воздушную среду, в процессе эволюции приобрели способность существовать в менее плотной по сравнению с водой среде: при обилии воздуха и кислорода, очень сильного окислителя, резком колебании освещенности, суточных и сезонных температур, при дефиците влаги.

Обитатели почвенной среды жизни отличаются небольшими размерами и способностью обходиться без света. Они могут питаться мелкими животными и органическими веществами мертвых организмов, попавших в почву.

Разнообразие форм живого может быть обусловлено не только обитанием в разных средах жизни, но и уровнем сложности организмов. В каждой среде обитают различные одноклеточные и многоклеточные существа. Самые древние из них – многочисленные прокариоты, бактерии. Более поздние – эукариоты, к которым относятся растения, грибы, животные.

Бактерии, растения, грибы и животных выделяют в отдельные царства клеточных организмов. Как особое царство живой природы рассматривают неклеточные организмы – вирусы. Все представители разных царств животного мира отличаются друг от друга по многим признакам. Внешнее и внутреннее строение, процессы жизнедеятельности, функционирование в природе у них могут быть совершенно разными. Однако, несмотря на все различия, все они существуют в форме организмов. Это особенность живой материи. Одни организмы являются одноклеточными, другие – многоклеточными.

По мере изучения разнообразия живого мира биологи выработали представление о биологической системе, что позволило говорить о системном разнообразии живого. Для системы характерно наличие нескольких различных частей или компонентов и связей между ними, обеспечивающих ее целостность. Например, организм, по сути, представляет собой целостную систему взаимодействующих живых компонентов – органов. Его называют живой или биологической системой, или просто биосистемой.

В природе можно встретить биосистемы разной сложности. Так, каждая клетка, по сути, биосистема. Ее целостность и жизнедеятельность – это результат взаимодействия внутриклеточных компонентов – молекул, химических соединений и органоидов.

Многоклеточный организм – это более сложная система, поскольку он включает в себя различные органы, состоящие из клеток.

В живой природе кроме клеток и организмов есть и другие, еще более сложные биосистемы – популяции, виды, биогеоценозы, биосфера. При этом каждая из биосистем представляет собой единое целое, состоящее из множества взаимодействующих частей. Например, популяция состоит из взаимодействующих особей, вид образуют внутривидовые структуры – популяции и так далее.

Разные по сложности биосистемы представляют собой особые эволюционно сложившиеся обособленные формы жизни на Земле или структурные уровни организации жизни.

В живой природе выделяют шесть основных уровней организации жизни: молекулярный, клеточный, организменный, популяционно-видовой, биогеоценотический и биосферный. По мере движения от молекулярного уровня к биосферному сложность структуры возрастает.

Все организмы состоят из химических веществ – неорганических и органических соединений. Из комплексов биологических молекул образуются надмолекулярные структуры – клеточные. Клетки – элементарные структурные единицы организмов. Любой одноклеточный или многоклеточный организм способен к самостоятельному существованию. Организмы одного вида, обитающие на определенной территории, образуют популяцию. Популяции разных видов, взаимодействующие между собой на определенной территории, входят в состав биогеоценозов. Все биогеоценозы Земли формируют биосферу.

Новое на сайте

>

Самое популярное