Домой Сдача спермограммы Физические и физиологические характеристики шума. Физические и физиологические характеристики звуковых волн

Физические и физиологические характеристики шума. Физические и физиологические характеристики звуковых волн

Физические характеристики звуковых волн имеют объективный характер и могут быть измерены соответствующими приборами в стандартных единицах – Это интенсивность, частота и спектр звука .

Интенсивность звука - э нергетическая характеристика звуковой волны, представляет собой энергию звуковой волны, попадающей на поверхность единичной площади за единицу времени, и измеряется в Вт/м 2 . Интенсивность звука определяет физиологическую характеристику слухового ощущении – громкость .

Частота звуковых колебаний (Гц)- определяет физиологическую характери­стику зву­кового ощущения, которую называют высотой звука .

Возможность оценки высоты тона слуховым аппаратом че­ловека связана с продолжительностью звучания. Ухо не способно оценить высоту тона, если время звукового воздей­ствия меньше 1/20 секунды.

Спектральный состав звуковых колебаний (акустический спектр), - число гармонических составляющих звука и соотношение их амплитуд, определяет тембр звука , физиологическую характеристику слухового ощущения.

Диаграмма слышимости.

Чтобы сформировалось слуховое ощущение, интенсив­ность звуковых волн должна превысить некоторое минимальное значение, называемое порогом слышимости. Оно имеет различные значения для различных частот звукового диапазона (нижняя кривая на рисунке 17.1 1). Это означает, что слуховой аппарат обладает не одинаковой чувствительностью к звуковым воздействиям на разных частотах. Максимальной чувствительностью ухо человека обладает в области частот 1000-3000 Гц. Здесь пороговое значение интенсивности звука минимально и составляет 10 –12 Вт/м 2 .

С увеличением интенсивности звука возрастает и ощуще­ние громкости. Однако, звуковые волны с интенсивностью порядка 1-10 Вт/м 2 вызывают уже ощущение боли. Максимальное значение интенсив­ности, при превышении которого возникает боль, называется порогом болево­го ощущения.

Он также зависит от частоты звука (верхняя кривая на рисунке 1), но в меньшей степени, чем порог слышимости.

Область частот и интенсивностей звука, ограниченная верхней и нижней кривыми рисунка 1, называет­ся областью слышимости.

Уровни интенсивности и уровни громко­сти звука

Закон Вебера-Фехнера.

Уже отмечалось, что объективная физическая характеристика звуковой волны - интенсивность определяет субъективную физиологическую характери­стику - громкость. Количественная связь между ними устанавливается законом Вебера-Фехнера : если интенсивность раздражителя увеличивается в геометрической прогрессии, то физиологическое ощущение растет в арифметической про­грессии.



Закон Вебера-Фехнера можно пересказать другими словами: физиологическаяреакция (в рассматриваемом слу­чае громкость ) на раздражитель (интенсивность звука) пропорциональна логарифму интенсивности раздра­жителя.

В физике и технике логарифм отношения двух интенсивностей называют уровнем интенсивности, поэтому величину, пропор­циональную десятичному логарифму отношения интенсивности некоторого звука (I) к ин­тенсивности на пороге слышимости I 0 = 10 -12 Вт/м 2:называют уровнем интенсивности звука (L):

(1)

Коэффициент n в формуле (1) определяет единицу измерения уровня интенсивности звука L . Если n =1, то единицей измерения L является Бел (Б). На практике обычно принимают n =10, тогда L измеряется в децибелах (дБ) (1 дБ = 0,1 Б). На пороге слышимости (I = I 0 ) уровень интенсивности звука L=0 , а на пороге болевого ощущения (I = 10 Вт/м 2)– L = 130 дБ.

Громкость звука в соответствии с законом Вебера-Фехнерапрямо пропорциональна уровнем интенсивности L:

Е = kL, (2)

где k - коэффициент пропорциональности, зависящий от частоты и интенсивности звука.

Если бы коэффициент k в формуле (2) был постоянным, то уровень гром­кости совпадал бы с уровнем интенсивности и мог бы измеряться в децибелах.

Но он зависит и от частоты и от интенсивности звуковой волны, поэтому громкость звука измеряют в других единицах – фонах . Постановили, что на частоте 1000 Гц 1 фон = 1 дБ , т.е. уровень интенсивности в децибелах и уровень громкости в фонах совпадают(в формуле (2) коэффициент k = 1 на частоте 1000 Гц). На других частотах для перехода от децибел к фонам не­обходимо вводить соответствующие поправки, которые можно определить с помощью кривых равной громкости (см. рис.1).



Определение порога слышимости на разных частотах составляет основу методов измерения остроты слуха. Полученная кривая называется спектральной характеристикой уха на пороге слыши­мости или аудиограммой. Сравнивая порог слышимости пациента с усредненной нормой, можно судить о степени развития нару­шений слухового аппарата.

Порядок выполнения работы

Снятие спектральной характеристики уха на пороге слышимости проводится с помощью генератора синусоидального сигнала SG-530 и наушников.

Основные органы управления генератора расположены на передней панели (рис.3). Там же расположен выходной разъем для подключения наушников. На задней панели генератора расположены выключатель питания, сетевой шнур и клемма заземления.

Рис. 3. Передняя панель генератора:

1- выходной разъем; 2 -ЖКИ; 3 - энкодер.

Управление генератором осуществляется с помощью нескольких меню, которые выводятся на жидкокристаллический индикатор (ЖКИ). Система меню организована в виде кольцевой структуры. Короткое нажатие кнопки энкодера позволяет «по кругу» переходить между меню, длинное нажатие в любом из пунктов меню приводит к переходу на главное меню. Любое действие по переходу между пунктами меню сопровождается звуковым сигналом.

С помощью системы меню можно задать частоту выходного сигнала генератора, амплитуду выходного сигнала, значение ослабления аттенюатора, считать или записать предустановку частоты, а также выключить или включить выходной сигнал. Увеличение или уменьшение значения выбранного параметра производится поворотом энкодера по (вправо) или против (влево) направления часовой стрелки соответственно.

В исходном состоянии генератора на индикатор выводится главное меню, в котором отображается текущее значение частоты, амплитуды и состояние аттенюатора. При повороте энкодера или нажатии кнопки энкодера происходит переход в меню установки частоты (рис. 4).

Одиночный поворот энкодера вправо или влево приводит к изменению частоты на один шаг.

Если на протяжении примерно 5 секунд регулировка частоты не производится, происходит автоматический переход на главное меню, за исключением меню калибровки частоты и амплитуды.

Нажатие кнопки энкодера в меню установки частоты приводит к переходу в меню установки амплитуды (рис. 4а,б). Значение амплитуды выводится в вольтах с запятой, которая отделяет десятые доли вольта, если значение больше 1 В, или без запятой в милливольтах, если значение меньше 1 В. На рис. 17.4,б показан пример индикации амплитуды, равной 10 В, а на рис. 17.4,в -амплитуды 10 мВ.

Нажатие кнопки энкодера в меню установки амплитуды приводит к переходу в меню установки ослабления аттенюатора. Возможные значения ослабления аттенюатора 0, -20, -40, -60 дБ.

Нажатие кнопки энкодера в меню установки ослабления аттенюатора приводит к переходу в меню установки шага изменения частоты. Шаг изменения значения частоты может иметь значение 0.01 Гц... 10 КГц. Нажатие кнопки энкодера в меню установки шага изменения частоты приводит к переходу в меню установки шага изменения значения амплитуды (рис. 5). Шаг изменения значения амплитуды может иметь значение 1 мВ... 1 В.

Порядок выполнения работы.

1. Подключите к сети (220В. 50 Гц ) шнур питания генератора SG-530 нажатием кнопки «POWER» на задней панели;

2. Однократно нажмите кнопку энкодера - произойдет переход из главного меню в меню установки частоты «FREQUENCY» - и вращением энкодера установите первое значение частоты ν =100 Гц;

3. Нажатие кнопки энкодера в меню установки частоты приводит к переходу к меню установки амплитуды «AMPLITUDE» - установите значение амплитуды Uген =300 мВ;

4. Подключите наушники к генератору;

5. Уменьшая значение амплитуды до 100 мВ, добейтесь отсутствия шума в наушниках;

6. Если при минимальной амплитуде (100 мВ) звук в наушниках ещё слышен, нажатием кнопки энкодера перейдите в меню установки ослабления аттенюатора «ATTENUATOR» и установите минимальное ослабление L (например, -20dB), при котором звук исчезает ;

7. Запишите полученные значения частотыν , амплитудыUген и ослабления L в таблицу результатов измерений (таблица 1) ;

8. Аналогично добейтесь отсутствия звука для каждой из предложенных частотν ;

9. Произведите расчёт амплитуды на выходе генератораUвых по формулеUвых = Uген ∙ K, где коэффициент ослабленияK определяется по величинеослабления L из таблицы2;

10. Определите минимальное значениеамплитуды на выходе генератораUвых min как наименьшееиз совокупности всех полученных значенийамплитуды на выходе генератораUвых для всех частот;

11. Произведите расчёт уровня громкости на пороге слышимости E по формуле E=20lg Uвых/ Uвых min ;

12. Постройте график зависимости величины уровня громкости на пороге слышимости E от значения логарифма частоты lg ν . Полученная кривая будет представлять собой порог слышимости.

Таблица 1 . Результаты измерений.

ν, Гц lg ν Uген, мВ L, дБ Коэффициент ослабления, K U вых = К·U ген мВ Уровень интенсивности (дБ ) E =20 lg (Uвых/ Uвых min)
2,0
2,3
2,7
3,0
3,3
3,5
3,7
4,0
4,2

Таблица 2. Связь показаний аттенюатора L (0, -20, -40, -60 дБ) и коэффициента ослабления по напряжению K (1, 0,1, 0,01, 0,001).

Контрольные вопросы:

1. Природа звука. Скорость звука. Классификация звуков (тоны, шумы).

2. Физические и физиологические характеристики звука (частота, интенсивность, спектральный состав, высота, громкость, тембр).

3. Диаграмма слышимости (порог слышимости, порог болевого ощущения, область речи).

4. Закон Вебера-Фехнера. Уровни интенсивности и уровни громкости звука, связь между ними и единицы измерения.

5. Методика определения порога слышимости (спектральной характеристики уха на пороге слышимости)

Решить задачи:

1. Интенсивность звука частотой 5 кГц равна 10 -9 Вт/м 2 . Определить уровни интенсивности и громкости этого звука.

2. Уровень интенсивности звука от некоторого источника равен 60 дБ. Чему равен суммарный уровень интенсивности звука от десяти таких ис­точников звука при их одновременном действии?

3. Уровень громкости звука частотой 1000 Гц после его прохождения че­рез стенку понизился от 100 до 20 фон. Во сколько раз уменьшилась ин­тенсивность звука?

Литература:

1. В.Г.Лещенко, Г.К.Ильич. Медицинская и биологическая физика.- Мн.: Новое знание. 2011.

2. Г.К.Ильич. Колебания и волны, акустика, гемодинамика. Пособие. – Мн.: БГМУ, 2000.

3. А.Н. Ремизов. Медицинская и биологическая физика.- М.: Высш. шк. 1987.

Основными физическими параметрами, характеризующими шум в какой-либо точке пространства, с точки зрения охраны труда, является; звуковое давление P , интенсивность звукаI, частотаf , звуковая мощностьW, уровни звукового давленияL P , интенсивностиL I и мощностиL w .

Звуковое давление - это переменная составляющая давления воздуха, возникающая в результате колебания источника звука, накладывающаяся на атмосферное давление и вызывающая его флуктуацию (колебание). Таким образом, звуковое давление определяется как разность между мгновенным значением полного давления и средним давлением, которое наблюдается в среде при отсутствии источниказвука. Единица измерения – Па (н/м 2).

На слух действует квадрат звукового давления

где Т 0 – время осреднения, Т= 30-100 мс;

Р( t ) – мгновенное значение полного звукового давления.

При распространении звуковой волны происходит перенос энергии. Количество звуковой энергии, отнесенное к единице поверхности и проходящей в одну секунду в направлении распространения волн, называется интенсивностью звука.

Интенсивность J и звуковое давлениеР связаны между собой соотношением

, (2)

где Р - среднеквадратичное значение звукового давления, Па;

- плотность среды, кг/м 3 .

с – скорость распространения звука, м/с.

Звуковое давление и интенсивность звука являются характеристиками звукового поля в определенной зоне пространства и не характеризуют непосредственно источник шума. Характеристикой непосредственно источника шума является его звуковая мощность (W ). Эта величина характеризует определенное количество энергии, затрачиваемой источником звука в единицу времени на возбуждение звуковой волны. Звуковая мощность источника определяет интенсивность генерируемых волн. Чем выше интенсивность данной волны, тем выше громкость звука. В обычных условиях источник звука излучает энергию независимо от окружающей среды, так же как электрический камин излучает теплоту. Единицей измерения мощности источника звука является Ватт (Вт). В реальных условиях мощность источника звука изменяется в очень широких пределах: от 10 -12 до многих миллионов ватт (табл.1). В таких же широких пределах изменяется звуковое давление и интенсивность.

Ухо человека не может определять звуковое давление в абсолютных единицах, но может сравнивать давление различных источников звука. Именно поэтому, а также, учитывая большой диапазон используемого звукового давления для его определения, пользуются относительной логарифмической шкалой, которая позволяет резко сократить диапазон значений измеряемых величин. Каждому делению такой шкалы соответствует изменение интенсивности звука, звукового давления или другой величины не на определенное число единиц, а в определенное число раз.

Применение логарифмической шкалы оказалось возможным и удобным благодаря физиологической особенности нашего слуха – одинаково реагировать на относительно равные изменения интенсивности звука. Например, возрастания интенсивности звука в десять раз (от 0,1 до 1, от 1 до 10 или от 10 до 100 Вт/м 2) оцениваются как примерно одинаковые приросты громкости. При увеличении любого числа в одном и том же отношении его логарифм также возрастает на одно и то же число единиц ( q 10 = 1, q 100 = 2 ;ℓq 1000 = 3 и т.д.), что и отражает вышеуказанную особенность слуха.

Десятичный логарифм отношения двух интенсивностей звука называют уровнем одной из них по отношению к другой L . Единицей измерения уровня является Бел (Б ), ей соответствует отношение уравниваемых интенсивностей, равное 10. Если они отличаются в 100, 1000, 10000paз, то уровни имеют разницу соответственно в 2, 3, 4 Бел - слишком большая величина, поэтому в практических измерениях пользуются десятыми долями бела - децибелами (дБ). Можно измерять в децибелах не только отношения, но и сами величины интенсивностей или звуковых давлений. В соответствии с требованиями международной организации по стандартизации (ИСО) условились за нулевой уровень звука принять интенсивность, равнуюJ= 10 -12 Вт/м 2 . Это нулевой (пороговый) уровень звука. Тогда интенсивность любого звука или шума можно записать:

а) уровень интенсивности звука,

,

где J o - пороговое значение интенсивности, равное 10 -12 Вт/м 2

б) уровень звукового давления

Таблица 1

Звуковая мощность различных источников

Уровни интенсивности звука и звуковогодавления связаны следующим образом

, (5)

где о ис о - плотность среды и скорость звука при нормальных атмосферных

условиях;

 и с - плотность среды и скорость звука в воздухе при замерах.

Пороговые значения Jo подобраны так, что при нормальных атмосферных условиях ( = о и с = с о ) уровень звукового давленияL равен уровню интенсивностиL y (L = L у )

в) уровень звуковой мощности

, (6)

где Р 0 - пороговое значение звуковой мощности, равное 10 -12 Вт.

Частотный спектр . Зависимость звукового давления или звуковой мощности как физических величин от времени можно представить в виде суммы конечного или бесконечного числа простых синусоидальных колебаний этих величин. Зависимость среднеквадратичных значений этих синусоидальных составляющих (или соответствующих им уровней в децибелах) от частоты называетсячастотным спектром или простоспектром .

Говоря о спектре, необходимо указывать ширину частотных полос, в которых производится определение спектра. Чаще всего применяются октавные и треть октавные полосы. Октавная полоса (октава) – такая полоса частот, в которой верхняя граничная частотаf гр.в в два раза больше нижнейf гр.н. В треть октавной полосе соотношение равно 1,26. Полоса частот определяется среднегеометрической частотой

. (7)

Значения среднегеометрических и граничных частот октавных полос, принятых для гигиенической оценки шума, приведены в табл.2.

Таблица 2

Среднегеометрические и граничные частоты октавных полос

Среднегеомет-

рическая частота,

Диапазон частот,

В практике нормирования и оценки шума под спектром обычно понимают зависимость уровней звукового давления в октавных или треть октавных полосах частот от среднегеометрической частоты этих полос. Спектр представляется в виде таблиц или графиков.

Характер спектра, следовательно, и производственного шума, может быть низкочастотным, среднечастотным и высокочастотным:

– низкочастотный - спектрс максимумом звукового давления в области частот до 300 Гц;

– среднечастотный - спектр с максимумом звукового давления в области частот 300 – 800 Гц;

– высокочастотный спектр cмаксимумом звукового давления в области частот свыше 800 Гц.

Шумы также подразделяются на:

– широкополосные, с непрерывным спектром шириной более одной октавы (шум подвижного состава, водопада);

– тональные, в спектре которых имеются слышимые дискретные тона (звон, свист, сирена и т.п.). Тональный характер шума устанавливается измерением в треть октавных полосах частот по превышению уровня в одной полосе над соседними не менее чем на 10 дБ.

По временным характеристикам шумы разделяются на постоянные, уровень которых за восьмичасовой рабочий день изменяется во времени не более чем на 5 дБ, и непостоянные уровни которых постоянно меняются более чем на 5 Дб..

Человек различает звуки по их частоте и громкости.. Высоту звука определяет его частота, а громкость – его интенсивность. Чем выше частота, тем более высоким воспринимается звук.


Физические и физиологические характеристики звука.

Физические и физиологические характеристики звука. Диаграмма слышимости. Уровни интенсивности и уровни громкости звука, связь между ними и единицы их измерения.
Акустика – раздел физики, в котором изучают звук и связанные с ним явления. Звук – продольная механическая волна, которая распространяется в упругих средах (твердых телах, жидкостях и газах) и воспринимается человеческим ухом. Звуку соответствует диапазон частот от 16 Гц до 20000Гц. Колебания частотой > 20000Гц – ультразвук, а < 16Гц – инфразвук. В газах звуковая волна – только продольная, в жидкостях и твёрдых телах – продольная и поперечная. Человек слышит только продольную механическую волну. Скорость звука в среде зависит от св-в среды (температуры, плотности среды и т.д.). В воздухе =340м/с; в жидкостях и кровенаполненных тканях = 1500м/c; в твердых телах =3000-5000м/c. Для твёрдых тел скорость равна: v=√E/p, где Е – модуль упругости (Юнга); р – плотность тела. Для воздуха скорость (м/с) возрастает с увеличением температуры: м=331,6+0,6t. Звуки делятся на тоны (простые и сложные), шумы и звуковые удары. Простой (чистый) тон – звук, источник которого совершает гармонические колебания (камертон). Простой тон имеет только одну частоту v.Сложный тон – звук, источник которого совершает периодические негармонические колебания (муз. звуки, гласные звуки речи), можно разложить на простые тона по т. Фурье. Спектр сложного тона линейчатый. Шум – сочетание беспорядочно меняющихся сложных тонов, спектр – сплошной. Звуковой удар – кратковременное звуковое воздействие (взрыв, хлопок). Различают объективные (физические), характеризующие источник звука, и субъективные (физиологические), характеризующие приёмник (ухо). Физиологические характеристики зависят от физических. Интенсивность I (Вт/м2) или уровень интенсивности L (дБ)– энергия звуковой волны, приходящаяся на площадку единичной площади за единицу времени. Эта физическая характеристика определяет уровень слухового ощущения (громкость Е [фон], уровень громкости). Громкость показывает уровень слухового ощущения. Гармонический спектр – тембр звука. Частота звука v (Гц) – высота звука. Порог слышимости – min интенсивность I0, которую человек ещё слышит, но ниже которого звук ухом не воспринимается. Человек лучше слышит на частоте 1000Гц, значит порог слышимости на этой частоте min (I0=Imin) и I0=10-12Вт/м2. Порог болевого ощущения – max интенсивность, воспринимаемая без болевых ощущений. При I0>Imax происходит повреждение органа слуха. Imax=10Вт/м2. Вводят понятие уровни интенсивности L=lgI/I0, где I0 – интенсивность звука на пороге слышимости. [Б - белах]. 1 бел – уровень интенсивности такого звука, интенсивность которого в 10 раз > пороговой интенсивности. 10дБ=1Б. L=10lgI/I0, (дБ). Человек слышит звуки в диапазоне уровней интенсивности звука от 0 до 130 дБ. Диаграмма слышимости – зависимость интенсивности или уровня интенсивности от частоты звука. На ней болей порог (БП) и порог слышимости (ПС) представлены в виде кривых, не зависят от частоты. Min порог слышимости 10-12 Вт/м2, а болевой порог Imax =1-10Вт/м2. Эти значения на частоте 1000Гц. Вблизи этой частоты человек слышит лучше всего. Поэтому в диапазоне частот 500-3000Гц при интенсивности 10-8-10-5Вт/м2 - область речи. (I, Вт/м2: 10, 1, 10-12, пусто; v,Гц: 16, 1000, 20000; L, дБ: 130, 120,0). Аудиометрия – метод исследования остроты слуха с помощью диаграммы слышимости. Звуковое ощущение (громкость) растет в арифметической прогрессии, а интенсивность – в геометрической. E=klgI. Закон Вебера-Фехнера: Изменение громкости прямо пропорционально lg отношения интенсивностей звуков, вызвавших это изменение громкости: ∆E=k1lgI2/I1, где k1=10k.
Активный транспорт ионов через мембрану. Виды ионных процессов. Принципы работы Na+-K+насоса.
Активный транспорт – перенос молекул и ионов через мембрану, который выполняется клеткой за счёт энергии метаболических процессов. Он ведёт к увеличению разности потенциалов по обе стороны мембраны. В этом случае перенос в-ва осуществляется из области его меньшей концентрации в область большей. Энергия на совершение работы получается при расщеплении молекул АТФ на АДФ и фосфатную группу под действием спец. белков – ферментов – транспортные АТФ-азы. АТФ=АДФ+Ф+Е, Е=45кДж/моль. Активный транспорт: ионов (Na+-К+-АТФ-аза; Сa2+-АТФ-аза; Н+-АТФ-аза; перенос протонов при работе дых. цепи митохондрий) и органических в-в. Натрий-калиевый насос. Под действием Na+, находящихся в цитоплазме, на внутренней стороне мембраны, транспортная АТФ-аза активизируется и расщепляется на АДФ и Ф. При этом выделяется 45кДж/моль энергии, идущей на присоединение трёх Na+ и изменением из-за этого конформации АТФ-азы. 3 Na+ переносятся через мембрану. Чтобы вернуться в первоначальную конформацию, АТФ-азе приходится перенести 2К+ через мембрану в цитоплазму. За один цикл из клетки выносится один положительный заряд. Внутренняя сторона клетки – отрицательный заряд, внешняя – положительный. Происходит разделение электрических зарядов и возникает электрическое напряжение, поэтому Na+-К+ насос – изогенный.
Определить скорость электронов, падающих на антикатод рентгеновской трубки, если min длина волны в сплошном спектре рентгеновских лучей 0,01нм.
eU=hC/Lmin; eU=mv2/2; hC/Lmin =mv2/2; v2= 2hC/mLmin=437,1*1014м/c; v=20,9*107м/с.
Оптическая сила линзы составляет 10 дптр. Какое увеличение она дает?
D=1/F; Г=d0/F=0,25м/0,1=2,5раза.
Оцените гидравлическое сопротивление сосуда, если при расходе крови в 0,2л/мин (3,3*10-6м3/с) разность давлений на его концах составляет 3мм.рт.ст.(399Па, т.к.760мм.рт.ст.=101кПа)
Х=∆P/Q=399/3,3*10-6=121*106 Па*с/м3
Какие уравнения называются дифференциальными, чем отличаются его общее и частное решения?
Дифференциальное – уравнение, связывающее аргумент х, искомую функцию у и её производные у’,у’’, … , yn различных порядков. Порядок диф. уравнения определяется наивысшим порядком входящей в него производной. Рассмотрим второй закон Ньютона F=ma, ускорение – первая производная от скорости. F=mdv/dt – диф. уравнение первого порядка. Ускорение – вторая производная от пути. F=md2S/dt2 - диф. уравнение второго порядка. Решением диф. уравнения является функция, которая обращает это уравнение в тождество. Решим уравнение: у’-x=0; dy/dx=x; dy=xdx; ᶘdy=ᶘxdx; y+C1=x2/2+C2; y= x2/2+C – общее решение диф. уравнения. При любом конкретном значении постоянной С в функции получим – частное решение, их может быть бесконечно много. Чтобы выбрать одно, нужно задать дополнительное условие.

Шум – это совокупность звуков различной частоты и интенсивности (силы), возникающих в результате колебательного движения частиц в упругих средах (твердых, жидких, газообразных).
Процесс распространения колебательного движения в среде называется звуковой волной, а область среды, в которой распространяются звуковые волны – звуковым полем.
Различают ударный, механический, аэрогидродинамический шум. Ударный шум возникает при штамповке, клепке, ковке и т.д.
Механический шум возникает при трении и биении узлов и деталей машин и механизмов (дробилки, мельницы, электродвигатели, компрессоры, насосы, центрифуги и др.).
Аэродинамический шум возникает в аппаратах и трубо-проводах при больших скоростях движения воздуха, газа или жидкости и при резких изменениях направления их движения и давления.
Основные физические характеристики звука :
– частота f (Гц),
– звуковое давление Р (Па),
– интенсивность или сила звука I (Вт/м2),
– звуковая мощность? (Вт).
Скорость распространения звуковых волн в атмосфере при 20°С равна 344 м/с.
Органы слуха человека воспринимают звуковые колебания в интервале частот от 16 до 20000 Гц. Колебания с частотой ниже 16 Гц (инфразвуки) и с частотой выше 20000 (ультразвуки) не воспринимаются органами слуха.
При распространении звуковых колебаний в воздухе периодически появляются области разрежения и повышенного давления. Разность давлений в возмущенной и невозмущенной средах называется звуковым давлением Р, которое измеряется в паскалях (Па).
Распространение звуковой волны сопровождается и переносом энергии. Количество энергии, переносимое звуковой волной за единицу времени через единицу поверхности, ориентированную перпендикулярно направлению распространения волны, называется интенсивностью или силой звука I и измеряется в Вт/м 2 .
Произведение называется удельным акустическим сопротивлением среды, которое характеризует степень отражения звуковых волн при переходе из одной среды в другую, а также звукоизолирующие свойства материалов.
Минимальная интенсивность звука , которая воспринимается ухом, называется порогом слышимости. В качестве стандартной частоты сравнения принята частота 1000 Гц. При этой частоте порог слышимости I 0 = 10-12 Вт/м 2 , а соответствующее ему звуковое давление Р 0 = 2*10 -5 Па. Максимальная интенсивность звука , при которой орган слуха начинает испытывать болевое ощущение, называется порогом болевого ощущения, равным 10 2 Вт/м 2 , а соответствующее ему звуковое давление Р = 2*10 2 Па.
Так как изменения интенсивности звука и звукового давления слышимых человеком, огромны и составляют соответственно 10 14 и 10 7 раз, то пользоваться для оценки звука абсолютными значениями интенсивности звука или звукового давления крайне неудобно.
Для гигиенической оценки шума принято измерять его интенсивность и звуковое давление не абсолютными физическими величинами, а логарифмами отношений этих величин к условному нулевому уровню, соответствующему порогу слышимости стандартного тона частотой 1000 Гц. Эти логарифмы отношений называют уровнями интенсивности и звукового давления, выраженные в белах (Б). Так как орган слуха человека способен различать изменение уровня интенсивности звука на 0,1 бела, то для практического использования удобнее единица в 10 раз меньше – децибел (дБ).
Уровень интенсивности звука L в децибелах определяется по формуле

L=10Lg(I/I o) .

Так как интенсивность звука пропорциональна квадрату звукового давления, то эту формулу можно записать также в виде^

L=10Lg(P 2 /P o 2)=20Lg(P/P o) , дБ.

Использование логарифмической шкалы для измерения уровня шума позволяет укладывать большой диапазон значений I и P в сравнительно небольшом интервале логарифмических величин от 0 до 140 дБ.
Пороговое значение звукового давления Р 0 соответствует порогу слышимости L = 0 дБ, порог болевого ощущения 120-130 дБ. Шум, даже когда он невелик (50-60 дБ) создает значительную нагрузку на нервную систему, оказывая психологическое воздействие. При действии шума более 140-145 дБ возможен разрыв барабанной перепонки.
Суммарный уровень звукового давления L, создаваемый несколькими источниками звука с одинаковым уров-нем звукового давления Li , рассчитываются по формуле

L=L i +10Lgn , дБ,

где n – число источников шума с одинаковым уровнем звукового давления.
Так, например, если шум создают два одинаковых источника шума, то их суммарный шум на 3 дБ больше, чем каждого из них в отдельности.
По уровню интенсивности звука еще нельзя судить о физиологическом ощущении громкости этого звука, так как наш орган слуха неодинаково чувствителен к звукам различных частот; звуки равные по силе, но разной частоты, кажутся неодинаково громкими. Например, звук частотой 100 Гц и силой 50 дБ воспринимается как равногромкий звуку частотой 1000 Гц и силой 20 дБ. Поэтому для сравнения звуков различных частот, наряду с понятием уровня интенсивности звука, введено понятие уровня громкости с условной единицей – фон. Один фон – громкость звука при частоте 1000 Гц и уровне интенсивности в 1 дБ. На частоте 1000 Гц уровни громкости приняты равными уровням звукового давления.
На рис. 1 показаны кривые равной громкости звуков, полученные по результатам изучения свойств органа слуха оценивать звуки различной частоты по субъективному ощущению громкости. Из графика видно, что наибольшей чувствительностью наше ухо обладает на частотах 800-4000 Гц, а наименьшей – при 20-100 Гц.

Обычно параметры шума и вибраций оценивают в октавных полосах. За ширину полосы принята октава, т.е. интервал частот, в котором высшая частота f 2 в два раза больше низшей f 1 . В качестве частоты, характеризующей полосу в целом, берут среднегеометрическую частоту. Среднегеометрические частоты октавных полос стандартизованы ГОСТ 12.1.003-83 "Шум. Общие требования безопасности " и составляют 63, 125, 250, 500, 1000, 2000, 4000 и 8000 Гц при соответствующих им граничным частотам 45-90, 90-180, 180-355, 355-710, 710-1400, 1400-2800, 2800-5600, 5600-11200.
Зависимость величин, характеризующих шум от его частоты, называется частотным спектром шума. Для удобства физиологической оценки воздействия шума на человека различают низкочастотный (до 300 Гц), среднечастотный (300-800 Гц) и высокочастотный (выше 800 Гц) шум.
ГОСТ 12.1.003-83 и СН 9-86 РБ 98 "Шум на рабочих местах. Предельно допустимые уровни " классифицирует шум по характеру спектра и по времени действия.
По характеру спектра :
– широкополосный, если он имеет непрерывный спектр шириной более одной октавы,
–тональный, если в спектре имеются выраженные дискретные тона. При этом тональный характер шума для практических целей устанавливается измерением в третьоктавных полосах частот (для третьоктавной полосы по пре-вышению уровня звукового давления в одной полосе над соседними не менее чем на 10 дБ.
По временным характеристикам :
– постоянный, уровень звука которых за 8-часовой рабо-чий день изменяется во времени не более чем на 5 дБ,
– непостоянный, уровень звука которых за 8-часовой ра-бочий день изменяется во времени более чем на 5 дБ.
Непостоянные шумы делятся на :
колеблющиеся во времени, уровень звука которых непрерывно изменяется во времени;
прерывистые, уровень звука которых ступенчато изменяется (на 5 дБ и более);
импульсные, состоящие из одного или нескольких звуковых сигналов, каждый длительностью менее 1 с.
Наибольшую опасность для человека представляют то-нальные, высокочастотные и непостоянные шумы.
Ультразвук по способу распространения подразделяется на :
– распространяемый воздушным путем (воздушный ультразвук);
– распространяемый контактным путем при соприкосновении с твердыми и жидкими средами (контактный ультразвук).
Ультразвуковой диапазон частот подразделяется на:
– низкочастотные колебания (1,12*10 4 - 1*10 5 Гц);
– высокочастотные (1*10 5 - 1*10 9 Гц).
Источниками ультразвука является производственное оборудование, в котором генерируются ультразвуковые колебания для выполнения технологического процесса, технического контроля и измерений, а также оборудование, при эксплуатации которого ультразвук возникает как сопутствующий фактор.
Характеристикой воздушного ультразвука на рабочем месте в соответствии с ГОСТ 12.1.001 "Ультразвук. Общие требования безопасности " и СН 9-87 РБ 98 "Ультразвук, передающийся воздушным путем. Предельно допустимые уровни на рабочих местах " являются уровни звукового давления в третьоктавных полосах со среднегеометрическими частотами 12,5; 16,0; 20,0; 25,0; 31,5; 40,0; 50,00; 63,0; 80,0; 100,0 кГц.
Характеристикой контактного ультразвука в соответствии с ГОСТ 12.1.001 и СН 9-88 РБ 98 "Ультразвук, передающийся контактным путем. Предельно допустимые уровни на рабочих местах " являются пиковые значения виброскорости или уровни виброскорости в октавных полосах со среднегеометрическими частотами 8; 16; 31,5; 63; 125; 250; 500; 1000; 2000; 4000; 8000; 16000; 31500 кГц.
Вибрации – это колебания твердых тел – частей аппаратов, машин, оборудования, сооружений, воспринимаемые организмом человека как сотрясения. Часто вибрации сопровождаются слышимым шумом.
По способу передачи на человека вибрация подразделяется на локальную и общую .
Общая вибрация передается через опорные поверхности на тело стоящего или сидящего человека. Наиболее опасная частота общей вибрации лежит в диапазоне 6-9 Гц, поскольку она совпадает с собственной частотой колебаний внутренних органов человека, в результате чего может возникнуть резонанс.
Локальная (местная) вибрация передается через руки человека. К локальной вибрации может быть отнесена и вибрация, воздействующая на ноги сидящего человека и на предплечья, контактирующие с вибрирующими поверхностями рабочих столов.
Источниками локальной вибрации, передающейся на работающих, могут быть: ручные машины с двигателем или ручной механизированный инструмент; органы управления машинами и оборудованием; ручной инструмент и обрабатываемые детали.
Общая вибрация в зависимости от источника ее возникновения подразделяется на:
общую вибрацию 1 категории – транспортную, воздействующую на человека на рабочем месте в самоходных и прицепных машинах, транспортных средствах при движении по местности, дорогам и агрофонам;
общую вибрацию 2 категории –- транспортно-технологическую, воздействующую на человека на рабочих местах в машинах, перемещающихся по специально подготовленным поверхностям производственных помещений, промышленных площадок, горных выработок;
общую вибрацию 3 категории – технологическую, воздействующую на человека на рабочем месте у стационарных машин или передающуюся на рабочие места, не имеющие источников вибрации.
Общая вибрация категории 3 по месту действия подразделяется на следующие типы:
3а – на постоянных рабочих местах производственных помещений предприятий;
3б – на рабочих местах на складах, в столовых, бытовых, дежурных и других вспомогательных производственных помещений, где нет машин, генерирующих вибрацию;
3в – на рабочих местах в административных и служебных помещениях заводоуправления, конструкторских бюро, лабораториях, учебных пунктах, вычислительных центрах, здравпунктах, конторских помещениях и других помещениях работников умственного труда.
По временным характеристикам вибрация подразделяется на :
– постоянную, для которой спектральный или корректированный по частоте нормируемый параметр за время наблюдения (не менее 10 минут или время технологического цикла) изменяются не более чем в 2 раза (6 дБ) при измерении с постоянной времени 1 с;
– непостоянную вибрацию, для которой спектральный или корректированный по частоте нормируемый параметр за время наблюдения (не менее 10 минут или время технологического цикла) изменяются более чем в 2 раза (6 дБ) при измерении с постоянной времени 1 с.
Основные параметры, характеризующие вибрацию:
– частота f (Гц);
– амплитуда смещения А (м) (величина наибольшего от-клонения колеблющейся точки от положения равновесия);
– колебательная скорость v (м/с); колебательное ускорение а (м/с 2).
Так же как и для шума, весь спектр частот вибраций, вос-принимаемых человеком, разделен на октавные полосы со среднегеометрическими частотами 1, 2, 4, 8, 16, 32, 63, 125, 250, 500, 1000, 2000 Гц.
Поскольку диапазон изменения параметров вибрации от пороговых значений, при которых она не опасна, до действительных – большой, то удобнее измерять недействительные значения этих параметров, а логарифм отношения действительных значений к пороговым. Такую величину называют логарифмическим уровнем параметра, а единицу ее измерения – децибел (дБ).

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

КОНТРОЛЬНАЯ РАБОТА

ФИЗИЧЕСКИЕ И ФИЗИОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЗВУКА

Физические и физиологические характеристики звука. Диаграмма слышимости. Уровень интенсивности и уровень громкости звука, единицы их измерения.

Физические характеристики акустических и, в частности, звуковых волн имеют объективный характер и могут быть измерены соответствующими приборами в стандартных единицах. Возникающее под действием звуковых волн слуховое ощущение субъективно, однако, его особенности во многом определяются параметрами физического воздействия.

Интенсивность звука I. как уже отмечалось ранее, представляет собой энергию звуковой волны, попадающей на площадку единичной площади за единицу времени, и измеряется в Вт/м2. Эта физическая характеристика определяет уровень слухового ощущения. который называется громкостью, являющейся субъективным физиологическим параметром. Связь между интенсивностью и громкостью не является прямо пропорциональной. Пока отметим только, что с увеличением интенсивности возрастает и ощущение громкости. Количественную оценку громкости можно выполнить, сравнивая слуховые ощущения, обусловленные звуковыми волнами от источников с различной интенсивностью.

При распространении звука в среде возникает некоторое добавочное давление, перемещающееся от источника звука к приемнику. Величина этого звукового давления Р также представляет физическую характеристику звука и среды его распространения. Она связана с интенсивностью соотношением

Частота звуковых гармонических колебаний определяет ту сторону звукового ощущения, которую называют высотой звука. Если звуковые колебания периодичны, но не подчиняются гармоническому закону, то высота звука оценивается ухом по частоте основного тона (первая гармоническая составляющая в ряду Фурье), период которого совпадает с периодом сложного звукового воздействия.

Слуховые ощущения формируются лишь в том случае, когда интенсивность звуковых волн превышает некоторое минимальное значение, называемое порогом слышимости. Для различных частот звукового диапазона этот порог имеет различные значения, т.е. слуховой аппарат обладает спектральной чувствительностью.

Спектральный состав звуковых колебаний определяется числом гармонических составляющих и соотношением их амплитуд, и характеризует тембр звука. Тембр, как физиологическая характеристика слухового ощущения, в некоторой степени зависит также от скорости нарастания и изменчивости звука.

С увеличением интенсивности звука, естественно, возрастает и ощущение громкости. Однако, звуковые волны с интенсивностью порядка 1-10 Вт/м2 вызывают ощущение боли. Значение интенсивности, при превышении которого возникает боль, называется порогом болевого ощущения. Как и порог слышимости, он тоже зависит от частоты звука, хотя и в меньшей степени. Область интенсивностей звука, заключенная между болевым порогом и порогом слышимости соответствующая частотному диапазону 16-20000 Гц. называется областью слышимости.

Количественная связь между ними устанавливается на основе закона Вебера-Фехнера. связывающего степень ощущения и интенсивность вызвавшего его раздражителя: ощущение растет в арифметической прогрессии, если интенсивность раздражителя увеличивается в геометрической прогрессии Другими словами: физиологическая реакция (в рассматриваемом случае громкость) на раздражитель (интенсивность звука) не прямо пропорциональна интенсивности раздражителя, а возрастает с ее увеличением существенно слабее -- пропорционально логарифму интенсивности раздражителя.

Для установления количественной связи между интенсивностью и громкостью звука введем уровень интенсивности звука (L ) - величину, пропорциональную десятичному логарифму отношения интенсивности звука

Коэффициент п в формуле определяет единицу измерения уровня интенсивности звука. Обычно принимают п=10, тогда величина L измеряется в децибелах (дБ). На пороге слышимости (/ = 1о) уровень интенсивности звука I=0, а на пороге болевого ощущения (I = 10 Вт/м2) -- L = 130 дБ. Если, например, интенсивность звука составляет 10^-7 Вт/м2 (что соответствует нормальному разговору), то из формулы следует, что уровень его интенсивности составляет 50 дБ.

Уровень громкости звука (часто его называют просто громкостью) Е связан с уровнем интенсивности Ј соотношением:

Е = kL ,

где к - некоторый коэффициент пропорциональности, зависящий от частоты и интенсивности звука.

Однако, из-за зависимости порога слышимости от частоты уровень громкости также изменяется с частотой. Например, звук с уровнем интенсивности 20 дБ и частотой 1000 Гц будет восприниматься существенно более громким, чем звук с тем же уровнем интенсивности, но частотой 100 Гц. Одинаковый уровень громкости на этих частотах будет достигнут, если для 1000 Гц уровень интенсивности составляет 20 дБ. а для 100 Гц --50 дБ. По этим причинам для измерения уровня громкости вводится особая единица, называемая фоном.

Для частоты 1000 Гц считается, что уровень интенсивности в децибелах и уровень громкости в фонах совпадают. При других частотах из области слышимости для перехода от децибел к фонам необходимо вводить соответствующие поправки. Этот переход можно осуществить с помощью кривых равной громкости.

Активный транспорт ионов через биомембрану. Виды ионных насосов. Принцип работы натрий-калиевого насоса.

Одним из основных свойств нервной клетки является наличие постоянной электрической поляризации ее мембраны - мембранного потенциала. Мембранный потенциал поддерживается на мембране до тех пор, пока клетка жива, и исчезает только с ее гибелью.

Причина возникновения мембранного потенциала:

1. Потенциал покоя возникает прежде всего в связи с асимметричным распределением калия (ионная асимметрия ) по обе стороны мембраны. Так как концентрация его в клетке примерно в 30 раз выше, чем во внеклеточной среде, существует трансмембранный концентрационный градиент, способствующий диффузии калия из клетки. Выход каждого положительного иона калия из клетки приводит к тому, что в ней остается несбалансированный отрицательный заряд (органические анионы). Эти заряды и обуславливают отрицательный потенциал внутри клетки.

2. Ионная асимметрия является нарушением термодинамического равновесия, и ионы калия должны были бы постепенно выходить из клетки, а ионы натрия - входить в нее. Чтобы сохранить такое нарушение, необходима энергия, расходование которой противодействовало бы тепловому выравниванию концентрации.

Т.к. ионная асимметрия связана с живым состояние и исчезает со смертью, это говорить о том, что эта энергия поставляется самим жизненным процессом, т.е. обменом веществ . Значительная часть энергии обмена веществ тратится на то, чтобы поддержать неравномерное распределение ионов между цитоплазмой и средой.

Активный транспорт ионов/ионный насос - механизм, который может переносить ионы из клетки или внутрь клетки против концентрационных градиентов (локализован в поверхностной мембране клетки и представляет собой комплекс ферментов, использующих для переноса энергию, освобождающуюся при гидролизе АТФ).

Асимметрия ионов хлора тоже может поддерживаться процессом активного транспорта.

Неравномерное распределение ионов приводит к появлению концентрационных градиентов между цитоплазмой клетки и наружной средой: калиевый градиент направлен изнутри наружу, а натриевый и хлорный - снаружи внутрь.

Мембрана не является совершенно непроницаемой и способна в определенной степени пропускать через себя ионы. Эта способность неодинакова для различных ионов в покоящемся состоянии клетки - она значительно выше для ионов калия, чем для ионов натрия. Поэтому основным ионом, который в покое может в определенной мере диффундировать через клеточную мембрану, является ион калия.

В такой ситуации наличие калиевого градиента будет приводить к небольшому, но ощутимому потоку ионов калия из клетки наружу.

В покое постоянная электрическая поляризация клеточной мембраны создается в основном за счет диффузионного тока ионов калия через клеточную мембрану.

Первично-активный транспорт

Действие пассивного транспорта через мембрану, в ходе которого ионы перемещаются по их электрохимическому градиенту, должно быть сбалансировано их активным транспортом против соответствующих градиентов. В противном случае, ионные градиенты исчезли бы полностью, и концентрации ионов по обе стороны мембраны пришли бы в равновесие. Это действительно происходит, когда активный транспорт через мембрану блокируют охлаждением или путём использования некоторых ядов. Существует несколько систем активного транспорта ионов в плазматической мембране (ионные насосы):

1) Натрий-калиевый насос

2) Кальциевый насос

3) Водородный насос.

Натрий-калиевый насос существует в плазматических мембранах всех животных и растительных клеток. Он выкачивает ионы натрия из клеток и загнетает в клетки ионы калия. В результате концентрация калия в клетках существенно превышает концентрацию ионов натрия. Натрий-калиевый насос - один из интегральных белков мембраны. Он обладает энзимными свойствами и способен гидролизовать аденозинтрифосфорную кислоту (АТФ), являющуюся основным источником и хранилищем энергии метаболизма в клетке. Благодаря этому указанный интегральный белок называется натрий-калийиевой АТФазой . Молекула ATФ распадается на молекулу аденозиндифосфорной кислоты (АДФ) и неорганический фосфат.

Таким образом, натрий-калиевый насос выполняет трансмембранный антипорт ионов натрия и калия. Молекула насоса существует в двух основных конформациях, взаимное преобразование которых стимулируется гидролизом ATФ. Эти конформации выполняют функции переносчиков натрия и калия. При расщеплении натрий-калиевой АТФазой молекулы ATФ, неорганический фосфат присоединяется к белку. В этом состоянии натрий-калиевая АТФаза связывает три иона натрия, которые выкачиваются из клетки. Затем молекула неорганического фосфата отсоединяется от насоса-белка, и насос превращается в переносчик калия. В результате два иона калия попадают в клетку. Таким образом, при расщеплении каждой молекулы ATФ, выкачиваются три иона натрия из клетки и два иона калия закачиваются в клетку. Один натрий-калиевый насос может перенести через мембрану 150- 600 ионов натрия в секунду. Следствием его работы является поддержание трансмембранных градиентов натрия и калия.

Через мембраны некоторых клеток животного (например, мышечных) осуществляется первично-активный транспорт ионов кальция из клетки (кальциевый насос ), что приводит к наличию трансмембранного градиента указанных ионов.

Водородный ионный насос действует в мембране бактериальных клеток и в митохондриях, а также в клетках желудка, перемещающего водородные ионы из крови в его полость.

Вторично-активный транспорт

Существуют системы транспорта через мембраны, которые переносят вещества из области их низкой концентрации в область высокой концентрации без непосредственного расхода энергии метаболизма клетки (как в случае первично-активного транспорта). Такой вид транспорта называется вторично- активным транспортом . Вторично-активный транспорт некоторого вещества возможен только тогда, когда он связан с транспортом другого вещества по его концентрационному или электрохимическому градиенту. Это симпортный или антипортный перенос веществ. При симпорте двух веществ ион и другая молекула (или ион) связываются одновременно с одним переносчиком прежде, чем произойдёт конформационное изменение этого переносчика. Так как ведущее вещество перемещается по градиенту концентрации или электрохимическому градиенту, управляемое вещество вынуждено перемещаться против своего градиента. Ионы натрия являются обычно ведущими веществами в системах симпорта клеток животного. Высокий электрохимический градиент этих ионов создаётся натрий-калиевым насосом. Управляемыми веществами являются сахара, аминокислоты и некоторые другие ионы. Например, при всасывании питательных веществ в желудочно-кишечном тракте глюкоза и аминокислоты поступают из клеток тонкой кишки в кровь путём симпорта с ионами натрия. После фильтрации первичной мочи в почечных гломерулах, эти вещества возвращаются в кровь той же системой вторично-активного транспорта.

В чем сущность гамма-хронографии и гамма-топографии? Сопоставьте диагностическую информацию, получаемую этими методами радионуклидной диагностики.

Изучая же характер пространственного распределения, мы приобретаем сведения о стуктурно-топографических особенностях той или иной части тела, органа или системы. Поэтому по своим функциональным свойствам радиофармацевтические приборы могут быть разделены на физиологически тропные и инертные. Из чего следует, что первые являются оптимальным средством для проведения структурно - топографических исследований, каждое из которых проводится, начиная с момента установления более или менее стабильного распределения РФП в исследуемом органе или системе. Вторые, которые часто называют индикаторами ” транзита ”, используются главным образом для исследования методами гамма - хронографии.

Гамма-хронография - в гаммакамере определяется динамика радиоактивности в виде кривых (гепаторадиография, радиоренография).

Термин «визуализация» образован от английского слова vision (зрение). Им обозначают получение изображения. Радионуклидная визуализация -- создание картины пространственного распределения в органах РФП, введенного в организм (гамма-топография). Для визуализации распределенного в организме РФП в современных радиологических центрах и лабораториях применяют 4 радиодиагностических прибора: сканер, гамма-камеру, однофотонный эмиссионный томограф и двухфотонный

Для обнаружения распределения радионуклидов в разных органах тела используют гамма-топограф (сцинтиграф), который автоматически регистрирует распределение интенсивности радиоактивного препарата. Гамма-топограф представляет собой сканирующий счетчик, который постепенно проходит большие участки над телом больного. Регистрация излучения фиксируется, например, штриховой отметкой на бумаге. На рис. 1, а схематически показан путь счетчика, а на рис. 2, б -- регистрационная карта.

Методики, которые позволяют оценить главным образом состояние функции органа или систем относятся к методикам динамического радионуклидного исследования и носят название - радиометрия, радиография или гамма - хронография

Методики, основанные на принципе определения функции отдельных органов и систем путем получения записи кривой получили следующее название

радиокардиография или гамма - хронография сердца

радиоэнцефалография или гамма - хронография черепа

радиоренография или гамма - хронография почек

радиогепатография или гамма - хронография печени

радиопульмонография или гамма - хронография легких

Методики, которые позволяют получить представление об анатомо-топографическом состоянии внутренних органов и систем относятся к статическим радионуклидным исследованиям и носят название - гамма-топография или сканирование, сцинтиграфия Исследования при статических исследованиях выполняют на сканерах (сканирование) или на гамма - камерах (сцинтиграфия), которые имеют примерно равные технические возможности в оценке анатомо-топографического состояния внутренних органов, однако сцинтиграфия имеет определенные преимущества Сцинтиграфия выполняется более быстро. Сцинтиграфия дает возможность совмещать статические и динамические исследования

Дайте определение явлению аккомодации глаза. Укажите механизм реализации этого явления. Проиллюстрируйте необходимость аккомодации построением изображения равноудаленных от глаза предметов.

Аккомодация - это механизм, позволяющий нам фокусироваться на предмете, независимо от его расстояния до нашего глаза

Сначала анатомия. Ресничная мышца залегающая в ресничном теле, состоит из трех самостоятельных групп мышечных волокон (их даже называют отдельными мышцами): радиальные волокна (от хрусталика к наружной оболочке глаза), циркулярные (вот эти - кольцом как удав) и меридиональные (под самой склерой вдоль меридианов глаза, если считать, что полюсы на глазном яблоке - впереди и сзади). Мышечные волокна сами не прикрепляются к хрусталику, они находятся в толще ресничного тела. Но от ресничного тела к центру, к капсуле хрусталика идут так называемые Цинновы связки. Вся картина напоминает колесо велосипеда, где шина - ресничная мышца, обод - ресничное тело, спицы - Цинновы связки, а ось - хрусталик. Теория аккомодации Гельмгольца: двигательную иннервацию ресничная мышца получает от вегетативной нервной системы, поэтому акт аккомодации приказам коры головного мозга не подчиняется. Мы не можем просто напрячь ресничную мышцу, как могли бы просто поднять руку. Для включения механизма аккомодации нужно перевести взгляд на ближе лежащий предмет. От него в глаз идет расходящийся пучок лучей, для преломления которого оптической силы глаза уже мало, фокус изображения получается за сетчаткой, а на сетчатке появляется расфокусировка. Вот эта расфокусировка изображения воспринятая мозгом, является импульсом к включению механизма аккомодации. Нервный импульс (приказ) бежит по глазодвигательному нерву (в его составе есть парасимпатические вегетативные волокна) к ресничной мышце, мышца сокращается (сжимается кольцо удава), натяжение Цинновых связок уменьшается, они перестают растягивать капсулу хрусталика. А хрусталик - это эластичный шарик, который только натяжением капсулы удерживается в сплющенном состоянии. Как только натяжение капсулы уменьшается, хрусталик становится более выпуклым, преломляющая способность его увеличивается, рефракция глаза усиливается, и фокус изображения близлежащего предмета возвращается на сетчатку. Если теперь перевести взгляд опять вдаль, фокус изображения возвращается на сетчатку, информации о расфокусировке нет, нервного импульса нет, ресничная мышца расслабляется, натяжение Цинновых связок усиливается, они растягивают капсулу хрусталика, и хрусталик становится опять плоским. Таким образом, по Гельмгольцу имеют место следующие положения:

1. механизм аккомодации состоит из двух составляющих: напряжения аккомодации (активный процесс) и расслабления аккомодации (пассивный процесс). звук гармонический колебание визуализация

2. напряжение аккомодации может передвигать фокус только вперед, при расслаблении аккомодации он сам перемещается назад.

3. глаз может сам за счет силы ресничной мышцы компенсировать небольшие степени дальнозоркости - ресничная мышца все время в небольшом напряжении, это называется «привычный тонус аккомодации». Именно поэтому в молодом возрасте бывает скрытая дальнозоркость, которая вылезает со временем. Поэтому одни люди до старости видят вдаль хорошо, а другим с возрастом требуются положительные очки для дали - скрытая дальнозоркость проявилась.

4. близорукость глаз скомпенсировать не может, потому что напряжением аккомодации невозможно передвинуть фокус назад. Поэтому даже слабые степени близорукости проявляются снижением зрения вдаль, поэтому скрытой близорукости не бывает.

Объем аккомодации - это величина в диоптриях, на которую хрусталик способен менять свою оптическую силу. Длина аккомодации - это часть пространства (в метрах или сантиметрах), в пределах которой работает аккомодация, то есть в пределах которой мы можем четко видеть предметы. Длина аккомодации характеризуется положением двух точек - ближайшей точки ясного зрения и дальнейшей точки ясного зрения. Расстояние между ними - это и есть длина аккомодации. Соответственно, на ближайшую точку ясного зрения мы смотрим при максимальном напряжении аккомодации, а на дальнейшую точку - при полном покое аккомодации. Мы выделяем аккомодацию каждым глазом отдельно (это абсолютная аккомодация) и двумя глазами вместе (относительная аккомодация). В оптометрии принято абсолютную аккомодацию характеризовать положением дальнейшей и ближайшей точек ясного зрения, а относительную аккомодацию - объемом.

У эмметропов длина аккомодации - это все пространство, кроме нескольких сантиметров перед самым глазом (ближе, чем ближайшая точка ясного зрения). Соответственно высок объем аккомодации. Ресничная мышца у них натренированная.

Если дальнейшая точка ясного зрения ближе 5 метров - это близорукость, степенью которой будет величина, обратная дальнейшей точке ясного зрения. Например, при отодвигании от глаза текст начинает расплываться в 50 см, значит имеет место близорукость в 2 Д (100 см поделим на 50 см в системе СГС и 1 поделим на 0,5 в системе СИ). Если текст расплывается в 25 см от глаз - близорукость в 4 Д. У близоруких длина аккомодации намного меньше, чем у эмметропов - это область между дальнейшей и ближайшей точками ясного зрения. Заметьте, что все-таки есть лучи, которые фокусируются на сетчатке, значит, острота зрения у малышей с близорукостью все равно будет развиваться. Вблизи они видят хорошо сами, а вдаль смогут хорошо видеть с помощью очков. Соответственно, объем аккомодации у близоруких людей снижен относительно эмметропов. И это понятно. Допустим, ближайшая точка ясного зрения 10 см перед глазом. У эмметропа объем аккомодации - это размах взгляда из бесконечности до 10 см перед глазом. А у миопа - всего лишь от расстояния ближе 5 м до этих самых 10 см перед глазом. Чем больше близорукость, тем меньше объем аккомодации. Миопам просто не приходится тренировать свою ресничную мышцу, они и без ее напряжения видят вблизи хорошо. Поэтому при близорукости изначально мы имеем слабость аккомодации.

С дальнозоркостью сложнее всего. Дальнейшая точка ясного зрения у дальнозорких мнимая, она находится за глазом и практически совпадает с фокусом глаза (напомню, у дальнозорких он позади сетчатки). Это означает, что в природе нет таких лучей, которые сами фокусируются на сетчатке глаза, их можно получить только напряжением аккомодации или собирающими линзами. Отсюда важный вывод: если степень дальнозоркости выходит за пределы возможностей аккомодации, острота зрения развиваться у ребенка не сможет, просто не будет опыта четкого видения. После 12 лет у таких детей развить остроту зрения практически невозможно. Значит, на ребенка с высокой дальнозоркостью очки нужно надевать как можно раньше, чтобы дать возможность развивать остроту зрения. Объем аккомодации у дальнозорких обычно намного выше, чем у эмметропов. У них ресничная мышца как следует накачана, потому что даже при зрении вдаль, когда у эмметропов она отдыхает, у дальнозорких эта мышца работает. При перегрузке ресничной мышцы у дальнозорких начинает отдаляться от глаз ближайшая точка ясного зрения. Помочь здесь можно двумя способами: назначить очки для постоянного ношения, чтобы снять с мышцы излишнюю нагрузку (в этих очках ресничная мышца будет напрягаться вблизи в физиологических условиях, как у эмметропов) или дать очки только для чтения, чтобы облегчить чрезмерные нагрузки. Детям больше подходит первый способ, взрослым, у которых уже сформировался привычный тонус аккомодации - больше нравится второй. Относительную аккомодацию принято всегда характеризовать объемом. И измеряют ее в диоптриях - с помощью пробных линз из набора. В относительной аккомодации выделяют две части: положительную и отрицательную. Отрицательная часть - эта та аккомодация, которую мы затратили, чтобы четко увидеть какой-либо предмет, ее мы определяем методом нейтрализации положительными стеклами: смотрим на какой-нибудь предмет и приставляем к глазам положительные стекла, усиливая их до тех пор, пока предмет не начнет расплываться. Сила стекол, при которых предмет еще виден четко, покажет объем затраченной аккомодации. Положительная часть - это запас аккомодации, то есть та величина, на которую ресничная мышца еще способна сократиться, другими словами, резерв. Определяют ее аналогично отрицательной части, только приставляют к глазам отрицательные линзы.

Для четкого получения изображения предмета АВ, хрусталик изменит свое

фокусное расстояние (оптичекую силу)

Размещено на Allbest.ru

Подобные документы

    Природа звука и его источники. Основы генерации компьютерного звука. Устройства ввода-вывода звуковых сигналов. Интенсивность звука как энергетическая характеристика звуковых колебаний. Распределение скорости звука. Затухающие звуковые колебания.

    контрольная работа , добавлен 25.09.2010

    Природа звука, физические характеристики и основы звуковых методов исследования в клинике. Частный случай механических колебаний и волн. Звуковой удар и кратковременное звуковое воздействие. Звуковые измерения: ультразвук, инфразвук, вибрация и ощущения.

    реферат , добавлен 09.11.2011

    Распространение звуковых волн в атмосфере. Зависимость скорости звука от температуры и влажности. Восприятие звуковых волн ухом человека, частота и сила звука. Влияние ветра на скорость звука. Особенность инфразвуков, ослабление звука в атмосфере.

    лекция , добавлен 19.11.2010

    Особенности восприятия частоты звуковых колебаний ухом человека, параллельный спектральный анализ приходящих колебаний. Эквивалентная электрическая схема слухового анализатора. Пороги различения интенсивности звука, уровень громкости звуков и шумов.

    реферат , добавлен 16.11.2010

    Измерение и анализ данных об уровне громкости источников звука вокруг учащихся нашей школы и предложение способов защиты от шума. Физическая характеристика звука. Влияние звуков и шумов на человека. Измерение уровня громкости своего шепота, разговора.

    лабораторная работа , добавлен 22.02.2016

    Звуковые волны и природа звука. Основные характеристики звуковых волн: скорость, распространение, интенсивность. Характеристика звука и звуковые ощущения. Ультразвук и его использование в технике и природе. Природа инфразвуковых колебаний, их применение.

    реферат , добавлен 04.06.2010

    Что такое звук. Распространение механических колебаний среды в пространстве. Высота и тембр звука. Сжатие и разрежение воздуха. Распространение звука, звуковые волны. Отражение звука, эхо. Восприимчивость человека к звукам. Влияние звуков на человека.

    реферат , добавлен 13.05.2015

    Изучение механизма работы человеческого уха. Определение понятия и физических параметров звука. Распространение звуковых волн в воздушной среде. Формула расчета скорости звука. Рассмотрение числа Маха как характеристики безразмерной скорости течения газа.

    реферат , добавлен 18.04.2012

    Локализация слухового восприятия по уровню интенсивности и временной разнице. Экспериментальное исследование выбора лучших параметров расположения динамиков для создания объемного звука или иллюзии источника звука при изменении угла и высоты между ними.

    курсовая работа , добавлен 25.01.2012

    Проблема борьбы с шумом и пути ее решения. Физическая характеристика звука. Допустимый уровень шума; вредное воздействие на организм человека звуков, превышающих норму. Измерение и сравнительный анализ уровня громкости различных источников звука в школе.

Новое на сайте

>

Самое популярное