Домой Грыжи Т-клетки — марионетки, или как перепрограммировать Т-лимфоциты, чтобы вылечить рак. Дендритные клетки иммунной системы Типы т клеток

Т-клетки — марионетки, или как перепрограммировать Т-лимфоциты, чтобы вылечить рак. Дендритные клетки иммунной системы Типы т клеток

Уникальным свойством антигена, проникшего в организм, яв­ляется его способность специфически связываться с лимфоцитами и активировать их.

Согласно клонально-селекционной теории, выдвинутой в 1959 г. Бернетом, при нормальном развитии в организме возникает набор из тысяч очень небольших по объему субпопуляций лимфоцитов, имеющих на наружной мембране рецепторы лишь к одной какой-то детерминанте. Иммунный ответ оказывается специфическим в силу того, что проникший в организм антиген избирательно свя­зывается только с теми клетками, на поверхности которых имеют­ся соответствующие рецепторы. С остальными клетками этот ан­тиген не взаимодействует.

Связывание антигена индуцирует активацию лимфоцита, то есть запускает ряд процессов, приводящих к клеточному деле­нию и дифференцировке. В процессе дифференцировки лим­фоцитов происходит развитие таких эффекторных функций,


как антителообразование у В-клеток и появление цитотокси-ческой активности у части Т-клеток.

Под активацией лимфоцитов понимается достаточно слож­ный процесс перехода клетки из фазы G0 в фазу G1, вызванный взаимодействием со стимулирующим агентом (например, антиге­ном или митогеном). Термин «покоящийся лимфоцит» относится к лимфоцитам, которые находятся в фазе G0 (в этой фазе клеточ­ного цикла клетки не делятся), характеризующейся низким уров­нем метаболической активности, т. е. низкой скоростью синтеза белков и РНК при отсутствии синтеза ДНК. Реагирующие с анти­геном клетки согласно клонально-селекционной теории Бернета обычно находятся в покоящемся состоянии до получения стиму­лирующего сигнала.

При взаимодействии с антигеном в ранее «покоившихся лим­фоцитах» наряду с метаболическими изменениями, характерными для делящихся клеток, происходят процессы созревания, различ­ные в разных субпопуляциях лимфоцитов. В итоге каждая субпо­пуляция приобретает набор присущих только ей поверхностных антигенов и специфических функций.

Последовательность процессов активации лимфоцитов в об­щем виде может быть представлена следующим образом. Рецепто­ры на поверхности лимфоцита связывают стимулирующий лиганд (например, антиген) и сшиваются друг с другом, образуя неболь­шие локальные кластеры сшитых рецепторов, которые становятся наиболее эффективными в передаче активирующего сигнала.

Локальные кластеры повышают проницаемость мембраны лим­фоцита для одновалентных катионов, поступающих внутрь клет­ки, что приводит к деполяризации мембраны и локальному увели­чению концентрации Na + -, K + -АТФазы. Вследствие сшивки ре­цепторов лимфоцита активируется мембранная метилтрансфе-раза, которая катализирует образование достаточного количества монометилфосфатидилэтаноламина, повышающего текучесть мем­браны и вызывающего ее локальную перестройку. В результате этого открываются каналы, через которые ионы Са 2+ проникают (диффундируют) в лимфоцит. Вследствие такого локального уве­личения концентрации Са 2+ с внутренней стороны мембраны ак­тивируется фосфолипаза А2, катализирующая образование лизо-лецитина и арахидоновой кислоты из фосфатидилхолина. Эти ре­акции происходят в течение первых 30 мин после контакта лим­фоцита с антигеном.



Одновременно ионы Са 2+ активируют и другой цитоплазматичес-кий фермент, расщепляющий фосфатидилинозитол (по крайней мере в Т-клетках). Высвобождающаяся арахидоновая кислота при участии липоксигеназы и циклоксигеназы расщепляется с образова­нием лейкотриенов и простагландинов (одни продукты каскада ара­хидоновой кислоты регулируют синтез РНК и ДНК, другие - влия­ют на поглощение ионов Са 2+ или активность аденилатциклазы).


Лизолецитин с помощью ионов Са 2+ активирует гуанилат-циклазу, а активность аденилатциклазы уменьшается вследствие ее соседства с Ш + -К + -АТФазой, конкурирующей с ней за АТФ. Все это приводит к временному увеличению концентрации цГМФ, активирующего протеинкиназы, трансферазы жирных кислот и ферменты, увеличивающие синтез мембранных фосфолипидов. Из других протеинкиназ важное значение имеет активация проте-инкиназ, способствующих биосинтезу матричной РНК, полиами­нов и переносу метальных групп.

Поскольку транспорт глюкозы в клетку является Са-зависи-мым процессом, то поток ионов Са 2+ играет важную роль в уве­личении скорости ее транспорта, т. е. поставки исходного ма­териала для обеспечения множества энергозависимых синте­тических процессов. Повышенный транспорт аминокислот и нуклеотидов в клетку вызывает повышенное образование липо-сом, увеличение синтеза рибосомной и матричной РНК и синте­за белка в целом.

Поток ионов Са 2+ активирует сериновую эстеразу, вызываю­щую повышение клеточной подвижности благодаря изменениям в системе циклических нуклеотидов. Кроме того, сериновая эстера-за опосредованно активирует ядерную аденилатциклазу. Увеличе­ние в ядре концентрации цАМФ вызывает активацию киназ, спе­цифически фосфорилирующих кислые негистоновые белки, регу­лирующие транскрипцию и синтез ДНК. Это приводит к синтезу РНК и ДНК, начинающегося на 3-й сутки и достигающего макси­мума на 4...6-е сутки.

Среди факторов, влияющих на активацию лимфоцитов, следу­ет отметить следующие:

антигены, к которым имеются специфические рецепторы на лимфоцитах; популяцию таких лимфоцитов называют антиген-связывающими клетками;

антитела к иммуноглобулинам; сшивка поверхностных имму­ноглобулинов В-клеток с бивалентными антителами к этим имму­ноглобулинам;

интерлейкины IL-1, IL-2;

инсулин; он опосредованно, через активацию аденилатцикла­зы, активирует лимфоциты.

Ингибирующее влияние на лимфоциты оказывают следую­щие факторы:

липиды; наибольшей ингибирующей способностью из липо-протеидов обладают липопротеиды очень низкой плотности (ЛОНП), обусловливающие разобщение между потоком ионов Са 2+ в клетку и концентрацией образующихся при этом цикличес­ких нуклеотидов;

фрагменты компонентов системы комплемента СЗе, СЗс и C3d; они ингибируют пролиферацию Т-клеток и синтез антител в ответ на стимуляцию с помощью антигена.


Несмотря на то что механизмы активации лимфоцитов раз­личных популяций характеризуются определенной общностью, следует отметить и те особенности, которые наблюдаются при активации Т- и В-лимфоцитов, имеющих различные поверхност­ные маркеры, с помощью которых эти клетки взаимодействуют с внешними факторами.

Активация В-лимфоцитов. В-лимфоциты реагируют на три раз­личных типа антигенов:

2. Тимуснезависимый антиген типа 2 (например, не­которые линейные антигены, имеющие часто повторяющуюся, определенным образом организованную детерминанту, - полиме­ры D-аминокислот, поливонил-пирролидон, полисахарид пнев­мококков).

Эти антигены, длительно персистируя на поверхности спе­циализированных макрофагов краевого лимфатического узла и селезенки, специфически связываются с иммуноглобулиновыми рецепторами В-клеток. Таким образом, оба тимуснезависимых ан­тигена способны непосредственно, т. е. без участия Т-клеток, сти­мулировать В-лимфоциты и вызывать преимущественно синтез IgM. Индуцируемый ими иммунный ответ практически не сопро­вождается формированием клеток памяти.

3. Тимусзависимый антиген. Многие антигены
относятся к группе тимусзависимых. В отсутствие Т-лимфоцитов
эти антигены лишены иммуногенности - связавшись с В-клеточ-
ным рецептором, они, подобно гаптенам, не способны активиро­
вать В-клетку. Одна антигенная детерминанта тимусзависимого
антигена связывается с В-клеткой, а остальные - с Т-хелпером,
активируя его. Т-хелперы должны распознавать детерминанты но­
сителя на поверхности реагирующей В-клетки.

Антиген, связавшийся с поверхностными /gA-клетками, попа­дает в эндосомы вместе с молекулами МНС класса II, а затем возвращается на поверхность А-клетки в процессированной фор­ме. Он ассоциирован с молекулами МНС класса II и доступен для распознавания специфическими Т-хелперами. Носитель процессируется в В-клетках, запрограммированных на синтез антител к гаптену. После стимуляции Т-хелперами, распознаю­щими процессированный носитель, В-клеткам удается выпол­нить свою программу, т. е. начать производить антитела, реаги­рующие с гаптеном.

Механизм активации клеток. Связывание поверхностных рецеп­торов (IgM) В-клеток с антигеном или антителами к этим рецеп­торам вызывает совокупность последовательных реакций, анало­гичных реакциям при активации Т-клеток (поступление в В-лим-фоцит ионов Са 2+ и активация протеинкиназ) - это один меха­низм. Другой, имеющий важное значение для Т-зависимых ан-

Тигенов, - это увеличение экспрессии поверхностных молекул МНС класса II уже на самых ранних этапах активации В-клеток. С моле­кулами МНС класса II и процессированным антигеном связывается Т-хелпер, который продуцирует факторы (например, BSF-1 - от англ. B-cell stimulatory factor), обусловливающие переход В-кле­ток в фазу G-1 клеточного цикла. Как и активированная Т-клетка, стимулированный В-лимфоцит приобретает многочисленные по­верхностные рецепторы для ростовых факторов, выделяемых Т-хел-перами, в этом состоянии он готов к пролиферации - основному процессу в следующей фазе иммунного ответа.

Первыми начинают делиться Т-хелперы, на поверхности ко­торых экспрессируются высокоаффинные рецепторы к IL-2. Эти клетки пролиферируют в ответ либо на собственный IL-2, либо на IL-2, продуцируемый субпопуляцией Т-хелперов. Проли­ферацию В-клеточного клона обеспечивают Т-клеточные раство­римые факторы, в частности BSF-1 (фактор роста В-клеток, име­нуемый чаще интерлейкином-4), выделяемые активированными Т-клетками. Под влиянием других факторов (например, BCDF - от англ. B-cell differentiation factor) происходит созревание клона В-лимфобластов и ускорение их преобразования в плазматичес­кие клетки с высоким уровнем секреции IgM. Другой дифферен-цировочный фактор BCDF (также синтезируется активирован­ными Т-хелперами) переключает синтез с IgM на IgG и индуциру­ет те изменения, которые необходимы для обеспечения высокой скорости синтеза антител.

Активация Т-лимфоцитов. Для активации необходимо два сиг­нала. Роль первого сигнала может выполнять антиген (или мито-ген), связанный с молекулой МНС класса II на поверхности анти-генпрезентирующей клетки. Тройное взаимодействие между ан­тигеном, гликопротеином МНС и рецептором Т-лимфоцита гене­рирует сигнал, передаваемый через комплекс рецептора с моле­кулой CD-3 (это мембраносвязанный белковый комплекс, пред­ставляющий собой антигенспецифический Т-клеточный ре­цептор периферических Т-лимфоцитов), и одновременно обес­печивает воздействие на клетку высокой локальной концентра­ции IL-1 (второй сигнал), продуцируемого антигенпрезентирую-щей клеткой.

Активированные Т-клетки секретируют:

IL-2, стимулирующий деление клеток, имеющих рецептор к IL-2;

лимфокин BSF-1, активирующий В-клетки;

лимфокин BSF -2, стимулирующий клональную экспансию ак­тивированных В-лимфоцитов;

лимфокин BCDF -фактор дифференцировки В-клеток, спо­собствующий созреванию клеток с высокой скоростью секре­ции IgM;

лимфокин BCDF-фактор, вызывающий переключение с син­теза IgM на IgG и высокую скорость секреции последнего.

), уровня циркулирующих иммунных комплексов, основных классов иммуноглобулинов периферической крови, упор делается на расширенный анализ NK-клеток (Natural killers – "натуральные киллеры"), а также оценку активированных Т-лимфоцитов (CD3 + HLA-DR + CD45 +) и активированных цитотоксических лимфоцитов (CD8 + HLA-DR + CD45 +), отвечающих за противовирусный иммунитет. Анализ вышеперечисленных популяций клеток поможет понять, адекватно ли иммунная система реагирует на вирусную инфекцию и нуждается ли пациент в иммуностимулирующей терапии.

* Результаты исследования выдаются с заключением врача – аллерголога-иммунолога, доктора медицинских наук.

T-клеточные лейкозы

К каждой иммунограмме прилагается письменное заключение врача-иммунолога.



Важные замечания

Для диагностики патологий результаты этого исследования необходимо сопоставлять с клиническими данными и показателями других лабораторных анализов. Также следует отметить, что клиническую значимость исследования существенно повышает оценка иммунологического статуса пациента в динамике.

Литература

  • Хаитов, Р. М. Аллергология и иммунология: национальное руководство / под ред. Р. М. Хаитова, Н. И. Ильиной. – М. : ГЭОТАР-Медиа, 2009. – 656 с.
  • Хаитов, Р. М. Руководство по клинической иммунологии. Диагностика заболеваний иммунной системы: руководство для врачей / Р. М. Хаитов, Б. В. Пинегин, А. А. Ярилин. – М. : ГЭОТАР-Медиа, 2009. – 352 с.
  • Зуева Е. Е. Иммунная система, иммунограмма: рекомендации по назначению и применению в лечебно диагностическом процессе / Е. Е Зуева, Е. Б. Русанова, А. В. Куртова, А. П. Рыжак, М. В. Горчакова, О. В. Галкина – СПб. – Тверь: ООО "Издательство "Триада", 2008. – 60 с.
  • Кетлинский, С. А. Иммунология для врача / С. А. Кетлинский, Н. М. Калинина. СПб. : Гиппократ, 1998. – 156 с. Ярилин, А. А. Иммунология: учебник / А. А. Ярилин. – М. : ГЭОТАР-Медиа, 2010. – 752 с.
  • Хаитов, Р. М. Иммунология: атлас / Р. М. Хаитов, А. А. Ярилин, Б. В. Пинегин.М. : ГЭОТАР-Медиа, 2011. – 624 с.
  • Хаитов, Р. М. Иммунология: учебник / Р.М. Хаитов. – М. : ГЭОТАР-Медиа, 2009. – 320 с.
  • Хаитов, Р. М. Оценка иммунного статуса человека в норме и при патологии / Р. М. Хаитов, Б. В. Пинегин // Иммунология. – 2001. – N4. – С. 4-6.
  • Whiteside, T. L. Role of Human Natural Killer Cells in Health and disease / T. L. Whiteside, R. B. Herberman // Clinical and Diagnostic Laboratory Immunology. – 1994. – Vol. 1, №2. – P. 125-133.
  • Ginadi, L. Differential expression of T-cell antigens in normal peripheral blood lymphocytes: a quantitative analysis by flow cytometry / L. Ginadi, N. Farahat, E. Matutes // J. Clin. Pathol. – 1996. – Vol. 49, № 1. – P. 539-544.
  • Merser, J.C. Natural killer T-cells: rapid responders controlling immunity and disease / J.C. Merser, M.J. Ragin, A. August // International J. Biochemistry & Cell Biology. – 2005. – № 37. – P. 1337-1343.
  • Никитин, В. Ю. Маркеры активации на Т-хелперах и цитотоксических лимфоцитах на различных стадиях хронического вирусного гепатита С / В. Ю. Никитин, И. А. Сухина, В. Н. Цыган [и др.] // Вестн. Рос. Воен.-мед. акад. – 2007. – Т. 17, № 1. – С. 65-71.
  • Boettler, T. T cells with CD4 + CD25 + regulatory phenotype suppress in vitro proliferation of virus-specific CD8 + T cells during chronic hepatitis C virus infection / T. Boettler, H.C. Spangenberg, C. Neumann-Haefelin // J. Virology. – 2005. – Vol. 79, N 12. – P. 7860-7867.
  • Ormandy, L.A. Increased Populations of Regulatory T Cells in Peripheral Blood of Patients with Hepatocellular Carcinoma / L.A. Ormandy, T. Hillemann, H. Wedemeyer // J. Cancer Res. – 2005. – Vol. 65, N 6. – P. 2457-2464.
  • Sakaguchi, S. Naturally arising FoxP3-expressing CD4 + CD25 + regulatory T cells in immunological tolerance to self- and non-self / S. Sakaguchi // Nature Immunol. – 2005. – Vol. 6, N 4. – P. 345-352.
  • Romagnani, S. Regulation of the T cell response / S. Romagnani // Clin. Exp. Allergy. – 2006. – Vol. 36. – P. 1357-1366.
  • Хайдуков С. В., Основные и малые популяции лимфоцитов периферической крови человека и их нормативные значения (метод многоцветного цитометрического анализа) / Хайдуков С. В., Зурочка А. В., Тотолян А. А., Черешнев В. А. // Мед. иммунология. – 2009. – Т. 11 (2-3). - С. 227-238.

Статья на конкурс «био/мол/текст»: Ученые объединили методы иммунотерапии, цитотерапии и генотерапии для перепрограммирования Т-лимфоцитов в потенциальных «убийц» раковых клеток. Но и этого оказалось недостаточно - следующим шагом стало создание молекулярного «выключателя», с помощью которого можно регулировать время и силу действия активированных Т-клеток. Инновационный метод закладывает основу для резкого сокращения серьезных (а иногда и смертельных) побочных эффектов, вызванных терапией с использованием модифицированных Т-клеток.

Обратите внимание!

Спонсором номинации «Лучшая статья о механизмах старения и долголетия» является фонд «Наука за продление жизни ». Спонсором приза зрительских симпатий выступила фирма Helicon .

Спонсоры конкурса: Лаборатория биотехнологических исследований 3D Bioprinting Solutions и Студия научной графики, анимации и моделирования Visual Science .

Медицина перешла на новый уровень: клетки стали живым лекарством

В последнее время в терапии опухолевых заболеваний особое внимание уделяется адоптивной иммуноцитотерапии (от англ. adoptive - приемный). При этом часть клеток иммунной системы пациента искусственно «натравливают» на опухолевые клетки. Суть метода состоит в том, чтобы отобрать у пациента необходимые иммунные клетки, обработать их - например, иммунными цитокинами (небольшими белками, выполняющими функции регуляторов деления и дифференцировки специфических иммунных клеток), - а затем вернуть в организм уже активированные клетки, которые и будут помогать бороться с опухолями* (рис. 1).

* - Эта тема является одной из самых горячих направлений клинической иммунологии - см. статью «Хороший, плохой, злой, или Как разозлить лимфоциты и уничтожить опухоль » . - Ред.

Впервые метод адоптивной иммуноцитотерапии был описан еще в 1988 году - у пациентов с метастатической меланомой (то есть раком кожи на четвертой стадии) наблюдалась регрессия заболевания при терапии с помощью их TIL-клеток (лимфоцитов, инфильтрующих опухоль) . В настоящее время терапия метастатической меланомы на основе TIL-клеток является наиболее эффективным способом лечения данного заболевания, поскольку регрессия опухоли наблюдается у половины пациентов .

Существует несколько вариантов клеток, которые используются в адоптивной иммунотерапии; из них три используются при терапии опухолевых заболеваний: уже знакомые нам TIL-клетки (лимфоциты, инфильтрующие опухоль), LAC-клетки (лимфокин-активированные киллеры) и CIK-клетки (цитокин-индуцированные киллеры). На самом деле собственные Т-клетки организма тоже стараются бороться с опухолевыми клетками, только зачастую опухолевые клетки им «не по зубам». Не то, чтобы совсем - ведь существует иммунный надзор, осуществляемый Т-клетками и естественными киллерами (NK-клетками), с помощью которых иммунная система старается защититься от опухолей, - однако это вовсе не стопроцентная защита. Однако случается, что иммунный надзор не всегда достаточно силен, чтоб предотвратить развитие опухолей: так, при длительном применении иммунодепрессантов после трансплантаций органов повышается частота развития многих опухолей .

Необходима система наведения

Несмотря на сложность получения модифицированных клеток, а также сопутствующий риск возникновения серьезных побочных эффектов, все же главной проблемой метода иммуноцитотерапии является отсутствие способов прицельной доставки вводимых модифицированных иммунных клеток в опухоль. Раковые клетки часто делаются практически «невидимыми» для иммунной системы, и они образуют микросреду, которая подавляет активность и миграцию Т-клеток . Для того, чтобы сбросить мантию-невидимку с опухолевых клеток, Т-лимфоциты надо не только активировать, но и придать им способность прицельно узнавать опухолевые клетки. Т-клетки могут быть перепрограммированы методами генной инженерии путем введения генов, кодирующих рецепторы к опухолевым антигенам (TAA, tumour-associated аntigens) - оснащения собственной «системой наведения». Также можно заодно ввести гены для придания Т-клеткам устойчивости к иммуносупрессии для увеличения выживаемости или облегчения проникновения сконструированных Т-клеток в опухоль. В итоге, могут быть получены высокоактивные «наемные убийцы» раковых клеток .

Для получения эффективных «убийц» Т-лимфоциты модифицируют путем оснащения их искусственными химерными антигенными рецепторами (CAR, chimeric antigen receptors). Рецепторы химерные, поскольку одна часть (распознающая) была «позаимствована» у моноклональных антител, а часть, передающая сигнал, - у Т-клеточного рецептора (ТCR). В качестве внеклеточной «распознающей» части обычно служат вариабельные домены тяжелой и легкой цепи иммуноглобулинов необходимой специфичности (scFv), которые образуют специфичный к опухолевым клеткам антиген-связывающий участок (рис. 2).

Рисунок 2. Структура химерного антигенного рецептора (CAR). CAR состоит из внеклеточного домена (одноцепочечного вариабельного фрагмента антитела (scFv)), соединенного с помощью цепей и трансмембранных доменов с цитоплазматической сигнальной областью. Гены, кодирующие scFv, получены из В-клеток, продуцирующих антитела, специфичные к опухолевому антигену. CAR существует в виде димера, и распознавание опухоли происходит напрямую (без участия MHC). Рисунок из .

Все новое - это хорошо забытое старое. Первые Т-клетки с химерным антигенным рецептором были получены командой ученых под руководством профессора Эсхара (Zelig Eshhar ); результаты работы были опубликованы еще в 1989 году . Эсхар понял, что, обладая данной техникой, Т-клетки можно запрограммировать на нацеленную атаку.

Однако с момента обнаружения химерных антигенных рецепторов до внедрения технологии в практику прошло больше 20 лет. За это время были улучшены химерные антигенные рецепторы - были созданы CAR 2-го поколения, в которые был внесен дополнительный сигнальный домен костимулирующей молекулы, который позволил улучшить активацию Т-клеток и их распространение. В CAR 3-го поколения был добавлен еще один сигнальный домен, что в конечном итоге повысило уровни выживания и размножения модифицированных Т-клеток (рис. 3). В конечном итоге были улучшены способность к «выслеживанию» опухолевых клеток, а также уменьшены побочные эффекты.

Рисунок 4. Бутылка с питательной средой для Т-клеток , которые после введения в них нового рецептора выращивают около 10 дней до достижения ими количества в несколько миллиардов. Тогда они могут быть введены в вены пациента. Рисунок из .

Первые клинические испытания генетически модифицированных Т-лимфоцитов, несущих химерные антигенные рецепторы, прошли в 2012 году. Они выпали на долю девочки по имени Эмили, больной острой лимфобластной лейкемией. После того, как генетически модифицированные Т-клетки были обратно введены девочке, ее состояние резко ухудшилось, и она провела несколько недель в отделении интенсивной терапии на искусственной вентиляции легких. В какой-то момент жизнь Эмили висела на волоске, но в итоге девочка поправилась, и уже три года в ее организме врачи не находят даже единичных раковых клеток .

Побочные эффекты новой терапии

Несмотря на то, что иммуноцитотерапия Т-клетками с CAR является прорывом в области лечения опухолевых заболеваний, есть еще ряд опасностей, которые могут поджидать за углом. Доктор Карл Джун (Carl June ) из университета Пенсильвании был одним из первых, кто опубликовал успешные результаты лечения модифицированными Т-клетками, сравнил то, что происходит внутри тела пациента с «серийным убийством» и «массовым убийством». Когда миллиарды Т-клеток, которые были введены в организм, поделятся, то они смогут обнаружить и убить несколько фунтов опухоли. Но в этом тоже немало риска - многие пациенты страдают от синдрома высвобождения цитокинов (цитокинового шторма) - при борьбе Т-клетки с опухолевой клеткой высвобождается большое количество молекул цитокинов, что представляет угрозу для самого организма. Так, семь пациентов умерло вследствие этого синдрома .

Побочные эффекты связаны с мощной иммунной активностью модифицированных Т-клеток. Одним из камней преткновения является риск высокой токсичности, не позволяющий ввести подобное лечение на регулярной основе. «Т-клетки - действительно мощные создания» , - говорит профессор Венделл Лим (Wendell Lim ), заведующий отделом Департамента клеточной и молекулярной фармакологии Калифорнийского университета. - «Будучи активированными, они могут вызвать смерть. Нам необходима система удаленного контроля, которая сохранит силу этих модифицированных Т-клеток, и позволит специфично „общаться“ с ними и управлять Т-клетками, находящимися в организме» .

Т-клетки взяли под контроль

Ученые из Калифорнийского университета в Сан-Франциско создали молекулярный «включатель», с помощью которого можно управлять действиями генноинженерных Т-лимфоцитов. Как и обыкновенные Т-клетки, несущие CAR, новые Т-клетки с «включателем» будут взаимодействовать с опухолевыми клетками, но не будут переходить «в атаку», пока не будет введен специальный препарат. Данный препарат является своеобразным «химическим мостиком» внутри Т-клеток: он запускает иммунные реакции, «включает» их, переводя в активное состояние. Когда препарат перестает циркулировать в крови, Т-клетки снова переходят в «выключенное» состояние (рис. 5).

Рисунок 5. Титруемый контроль генноинженерных Т-клеток с помощью включаемого химерного антигенного рецептора. С обычным CAR Т-клетки активируются при соединении с клеткой-мишенью, при этом из-за очень сильного иммунного ответа есть риск высокой токсичности. «Включаемый» CAR требует небольшую стимулирующую молекулу для запуска терапевтической функции. Величину ответа (например, «убийства» клеток-мишеней) можно титровать, тем самым уменьшая токсичность при уменьшении количества небольшой стимулирующей молекулы. Рисунок из .

Внедрение «пульта управления» в Т-клетку с химерным антигенным рецептором - это пример простой и эффективной стратегии совмещения собственных и автономных решений клетки (например, обнаружение сигналов болезни) с контролируемыми пользователем из вне. Перегруппировка и расщепление основных частей CAR обеспечивает возможность «включения» и «выключения» химерных антигенных рецепторов. Данная работа также подчеркивает важность разработки оптимизированных биоинертных «пультов управления», таких как небольшие молекулы и свет, вместе с их клеточными компонентами реагирования, в целях повышения точности контролируемой терапии .

Таким образом, правильно дозируя препарат, можно управлять уровнем иммунной активности модифицированных Т-клеток. В частности, благодаря данной технологии можно снизить отрицательные последствия синдрома высвобождения цитокинов. Также иногда нормальные клетки экспрессируют небольшие количества белков, которые являются мишенью для Т-клеток с CAR. Поскольку модифицированные Т-клетки вводят в кровяное русло и они проходят через сердце и легкие, ткани этих органов могут быть повреждены прежде, чем Т-клетки достигнут своих намеченных целей в других частях тела. А с новой технологией Т-клетки будут в «выключенном» состоянии, пока не достигнут цели .

Иммунотерапия с помощью Т-клеток с CAR успешна против рака крови, но, когда дело доходит до твердых опухолей, которые образуются в толстой кишке, молочных железах, мозге и других тканях, модифицированные Т-клетки до сих пор не показывают высокой эффективности. Возможно, метод дистанционного управления Т-клетками позволит разработать более мощные версии химерных антигенных рецепторов, которые позволят Т-клеткам поражать твердые опухоли, при этом не обладая серьезными побочными эффектами.

Литература

  1. Хороший, плохой, злой, или Как разозлить лимфоциты и уничтожить опухоль ;
  2. Rosenberg S.A., Packard B.S., Aebersold P.M., Solomon D., Topalian S.L., Toy S.T. et al. (1988). Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report . ;
  3. Regalado A. (2015). Biotech’s coming cancer cure . MIT Technology Review ;
  4. Farley P. (2015). ‘Remote control’ of immune cells opens door to safer, more precise cancer therapies . University of California San Francisco ;
  5. Wu C., Roybal K.T., Puchner E.M., Onuffer J., Lim W.A. (2015). Remote control of therapeutic T cells through a small molecule-gated chimeric receptor . Science . 350 , aab4077..

T-лимфоциты , или Т-клетки (от лат. t hymus «тимус ») - лимфоциты , развивающиеся у млекопитающих в тимусе из предшественников - претимоцитов , поступающих в него из красного костного мозга . В тимусе T-лимфоциты дифференцируются, приобретая Т-клеточные рецепторы (ТКР, англ. TCR ) и различные корецепторы (поверхностные маркеры) . Играют важную роль в приобретённом иммунном ответе . Обеспечивают распознавание и уничтожение клеток, несущих чужеродные антигены , усиливают действие моноцитов , NK-клеток , а также принимают участие в переключении изотипов иммуноглобулинов (в начале иммунного ответа B-клетки синтезируют IgM , позже переключаются на продукцию IgG , IgE , IgA).

Типы Т-лимфоцитов

Т-клеточные рецепторы являются основными поверхностными белковыми комплексами Т-лимфоцитов, ответственными за распознавание процессированных антигенов, связанных с молекулами главного комплекса гистосовместимости (ГКГ, англ. Major Histocompatibility Complex (MHC) ) на поверхности антигенпрезентирующих клеток . Т-клеточный рецептор связан с другим полипептидным мембранным комплексом, CD3 . В функции комплекса CD3 входит передача сигналов в клетку, а также стабилизация Т-клеточного рецептора на поверхности мембраны. Т-клеточный рецептор может ассоциироваться с другими поверхностными белками, его корецепторами . В зависимости от корецептора и выполняемых функций различают два основных типа Т-клеток.

Т-хелперы

Т-хелперы (от англ. helper - помощник) - Т-лимфоциты, главной функцией которых является усиление адаптивного иммунного ответа. Активируют Т-киллеры, B-лимфоциты , моноциты , NK-клетки при прямом контакте, а также гуморально, выделяя цитокины . Основным признаком Т-хелперов служит наличие на поверхности клетки молекулы корецептора CD4 . Т-хелперы распознают антигены при взаимодействии их Т-клеточного рецептора с антигеном, связанным с молекулами главного комплекса гистосовместимости II класса (англ. Major Histocompatibility Complex II (MHC-II) ).

Т-киллеры

Т-хелперы и Т-киллеры образуют группу эффекторных Т-лимфоцитов , непосредственно ответственных за иммунный ответ. В то же время существует другая группа клеток, регуляторные Т-лимфоциты , функция которых заключается в регулировании активности эффекторных Т-лимфоцитов. Модулируя силу и продолжительность иммунного ответа через регуляцию активности Т-эффекторных клеток, регуляторные Т-клетки поддерживают толерантность к собственным антигенам организма и предотвращают развитие аутоиммунных заболеваний . Существуют несколько механизмов супрессии: прямой, при непосредственном контакте между клетками, и дистантный, осуществляющийся на расстоянии - например, через растворимые цитокины.

γδ Т-лимфоциты

Т-лимфоциты представляют собой небольшую популяцию клеток с видоизменённым Т-клеточным рецептором . В отличие от большинства других Т-клеток, рецептор которых образован α {\displaystyle \alpha } и β {\displaystyle \beta } субъединицами, Т-клеточный рецептор γ δ {\displaystyle \gamma \delta } -лимфоцитов образован γ {\displaystyle \gamma } и δ {\displaystyle \delta } субъединицами. Данные субъединицы не взаимодействуют с пептидными антигенами, презентированными белками ГКГ. Предполагается, что γ δ {\displaystyle \gamma \delta } Т-лимфоциты участвуют в узнавании липидных антигенов.

Т-супрессоры

Т-лимфоциты, обеспечивающие центральную регуляцию иммунного ответа.

Дифференциация в тимусе

Стадии дифференциации Т-лимфоцитов

Все Т-клетки берут своё начало от гемопоэтических стволовых клеток красного костного мозга , которые мигрируют в тимус и дифференциируются в незрелые тимоциты . Тимус создаёт микросреду, необходимую для развития полностью функционального репертуара Т-клеток, который является ГКГ-ограниченным и толерантным к самому себе.

Дифференциация тимоцитов разделяется на разные стадии в зависимости от экспрессии различных поверхностных маркеров (антигенов). На самой ранней стадии тимоциты не экспрессируют корецепторы CD4 и CD8 и поэтому классифицируются как двойные негативные (англ. Double Negative (DN) ) (CD4-CD8-). На следующей стадии тимоциты экспрессируют оба корецептора и называются двойными позитивными (англ. Double Positive (DP) ) (СD4+CD8+). Наконец на финальной стадии происходит селекция клеток, которые экспрессируют только один из корецепторов (англ. Single Positive (SP) ): или (CD4+), или (CD8+).

Раннюю стадию можно разделить на несколько подстадий. Так, на подстадии DN1 (англ. Double Negative 1 ) тимоциты имеют следующую комбинацию маркеров: CD44 +CD25 -CD117 +. Клетки с данной комбинацией маркеров ещё называют ранними лимфоидными предшественниками (англ. Early Lymphoid Progenitors (ELP) ). Прогрессируя в своей дифференциации, ELP активно делятся и окончательно теряют способность трансформироваться в другие типы клеток (например В-лимфоциты или миелоидные клетки). Переходя на подстадию DN2 (англ. Double Negative 2 ), тимоциты экспрессируют CD44 +CD25 +CD117 + и становятся ранними Т-клеточными предшественниками (англ. Early T-cell Progenitors (ETP) ). В течение DN3 подстадии (англ. Double Negative 3 ) ETP клетки имеют комбинацию CD44 -CD25 + и вступают в процесс β-селекции.

β-селекция

Гены Т-клеточного рецептора состоят из повторяющихся сегментов, принадлежащих к трём классам: V (англ. variable ), D (англ. diversity ) и J (англ. joining ). В процессе соматической рекомбинации генные сегменты, по одному из каждого класса, соединяются вместе (V(D)J-рекомбинация). Случайное объединение последовательностей сегментов V(D)J приводит к появлению уникальных последовательностей вариабельных доменов каждой из цепей рецептора. Случайный характер образования последовательностей вариабельных доменов позволяет генерировать Т-клетки, способные распознавать большое количество различных антигенов, и, как следствие, обеспечивать более эффективную защиту против быстро эволюционирующих патогенов. Однако этот же механизм зачастую приводит к образованию нефункциональных субъединиц Т-клеточного рецептора. Гены, кодирующие β-субъединицу рецептора, первыми подвергаются рекомбинации в DN3-клетках. Чтобы исключить возможность образования нефункционального пептида, β-субъединица образует комплекс с инвариабельной α-субъединицей пре-T-клеточного рецептора, формируя т. н. пре-T-клеточный рецептор (пре-ТКР) . Клетки, неспособные образовывать функциональный пре-ТКР, погибают в результате апоптоза . Тимоциты, успешно прошедшие β-селекцию, переходят на подстадию DN4 (CD44 -CD25 -) и подвергаются процессу позитивной селекции .

Позитивная селекция

Клетки, экспрессирующие на своей поверхности пре-ТКР все ещё не являются иммунокомпетентными, так как не способны связываться с молекулами главного комплекса гистосовместимости. Для узнавания молекул ГКГ T-клеточным рецептором необходимо наличие корецепторов CD4 и CD8 на поверхности тимоцитов. Образование комплекса между пре-ТКР и корецептором CD3 приводит к ингибированию перестроек генов β-субъединицы и в то же время вызывает активацию экспрессии генов CD4 и CD8. Таким образом тимоциты становятся двойными позитивными (DP) (CD4+CD8+). DP-тимоциты активно мигрируют в корковое вещество тимуса, где происходит их взаимодействие с клетками кортикального эпителия , экспрессирующими белки обоих классов ГКГ (MHC-I и MHC-II). Клетки, неспособные взаимодействовать с белками ГКГ кортикального эпителия, подвергаются апоптозу , в то время как клетки, успешно осуществившие такое взаимодействие, начинают активно делиться.

Негативная селекция

Тимоциты, прошедшие позитивную селекцию, начинают мигрировать к кортико-медуллярной границе тимуса. Попадая в медуллу, тимоциты взаимодействуют с собственными антигенами организма, презентированными в комплексе с белками ГКГ на медуллярных тимических эпителиальных клетках (мТЭК). Тимоциты, активно взаимодействующие с собственными антигенами, подвергаются апоптозу . Негативная селекция предотвращает появление самоактивирующихся Т-клеток, способных вызывать аутоиммунные заболевания , являясь важным элементом иммунологической толерантности организма.

Лимфоциты — это одна из разновидностей белых клеток крови. Лимфоциты составляют примерно от 15 до 40% белых клеток крови. И они являются одними из самых важных клеток иммунной системы, поскольку защищают вас от вирусных инфекций, помогают другим клеткам бороться с бактериальными и грибковыми инфекциями; производят антитела, борются с раком, а также координируют деятельность других клеток иммунной системы.

Два основных типа лимфоцитов -это В-клетки и Т-клетки. В-клетки создаются и созревают в костном мозге, в то время как Т-клетки создаются в костном мозге, но созревают в вилочковой железе («T» как раз и означает «тимус», то есть «вилочковая железа»). В-клетки производят антитела. Антитела помогают организму уничтожать аномальные клетки и инфицирующие организмы, таких как бактерии, вирусы и грибы.

Т-клетки делятся на три группы:

Т-хелперы (от англ. to help — «помогать»; также называются клетки Т4 или CD4+) помогают другим клеткам уничтожать инфицирующие организмы.

Т-супрессоры (от англ. to suppress — «подавлять»; также называются клетки Т8 или CD8+) сдерживают активность других лимфоцитов, так чтобы они не разрушали здоровые ткани.

Т-киллеры (от англ. to kill — «убивать»; также называются цитотоксические Т-лимфоциты или ЦТЛ и являются еще одним видом клеток Т8 или CD8+) распознают и уничтожают ненормальные или инфицированные клетки.

«С» и «D» в CD4 расшифровываются как cluster of differentiation — «кластер дифференциации» и обозначают кластер белков, входящих в состав рецепторов клеточной поверхности. Существуют десятки различных видов кластеров, но чаще всего мы говорим о CD4 и CD8.

Что такое число лимфоцитов CD4?

Клетки Т4. Клетки CD4+. Т-хелперы. Независимо от названия, если вы ВИЧ-положительны, то именно эти клетки важны для вас (Примечание: говоря о «Т-клетках», мы далее всегда будем иметь в виду именно клетки CD4).Зная количество клеток CD4 в крови человека, которое определяется по анализам крови, прописанным врачом, можно сказать, насколько здорова иммунная система и насколько успешно она борется с ВИЧ. Также полезно знать число лимфоцитов CD4 при принятии решения о том, когда нужно начинать антиретровирусную (АРВ) терапию и нужно ли начинать принимать лекарства против СПИД-ассоциированных инфекций.

Задача клеток CD4 состоит в том, чтобы «оповестить» другие клетки иммунной системы, что нужно бороться с той или иной инфекцией в организме. Они также являются главной мишенью ВИЧ, из-за чего их количество во временем снижается. Если клеток CD4 слишком мало, то это значит, что иммунная система работает не так, как надо.

Нормальное количество клеток CD4 — от 500 до 1500 клеток на кубический миллиметр крови (это примерно капля). В отсутствие специфического лечения против ВИЧ количество клеток CD4 уменьшается, в среднем, на 50−100 клеток каждый год. В случае если количество клеток CD4 меньше 200, у человека могут развиваться СПИД-ассоциированные заболевания (оппортунистические инфекции), такие как пневмоцистная пневмония. А если их уровень падает ниже 50−100 клеток, то может развиться и огромное количество других инфекций. По этой причине прием специфических препаратов для профилактики этих инфекций (профилактическое лечение) начинается как только количество лимфоцитов CD4 падает ниже определенного уровня, например, 200 в случае с пневмоцистной пневмонией.

В сочетании с анализом на определение вирусной нагрузки показатель количества клеток CD4 также поможет выяснить, когда начинать АРВ-терапию. Большинство экспертов сходятся во мнении, что АРВ-терапию следует начинать сразу после постановки диагноза.

Что такое доля лимфоцитов CD4?

В бланке результатов клинико-лабораторного исследования можно увидеть графу «доля лимфоцитов CD4+ (%)». Этот показатель имеет большое значение для вас и вашего врача. У здорового взрослого человека число клеток CD4 составляет от 32% до 68% от общего количества лимфоцитов, большой группы белых клеток крови, которые включают в себя клетки CD4, клетки CD8 (см. ниже) и В-клетки. По сути дела, в лаборатории количество клеток CD4 в образце крови определяется через долю клеток CD4.

Зачастую показатель доли клеток CD4 является более точным, чем непосредственное исчисление количества лимфоцитов CD4 в образце крови, поскольку он не так сильно изменяется от анализа к анализу. Например, число лимфоцитов CD4 человека может варьироваться от 200 до 300 в течение нескольких месяцев, тогда как доля лимфоцитов CD4 остается постоянной на уровне, скажем, 21%. Пока доля лимфоцитов CD4 остается на уровне 21% или выше, иммунная система работает нормально, независимо от конкретного количества клеток CD4. В то же время, если доля лимфоцитов CD4 не превышает 13%, независимо от конкретного количества клеток CD4, обычно это означает, что иммунная система повреждена и пора начинать профилактическое лечение (препараты для профилактики заболеваний) с целью предотвращения оппортунистических инфекций, таких как пневмоцистная пневмония.

Что такое количество клеток CD8 и соотношение Т-клеток?

Клетки CD8, которые также называются клетки T8, играют важную роль в борьбе с инфекциями, такими как ВИЧ. У здорового взрослого обычно от 150 до 1000 клеток CD8 на кубический миллиметр крови. В отличие от клеток CD4, у людей, живущих с ВИЧ, клеток CD8, как правило, больше среднего. К сожалению, причины этого в точности не знает никто. Поэтому результаты данного анализа редко используются при принятии решения о лечении.

В результатах клинико-лабораторного исследования также может быть указано соотношение Т-клеток (CD4+/CD8+), то есть количество клеток CD4, деленное на количество клеток CD8. Поскольку количество клеток CD4 у людей, живущих с ВИЧ, как правило, ниже обычного, а количество клеток CD8 обычно выше, их соотношение, как правило, низкое. Нормальное соотношение, как правило, от 0,9 до 6,0. Как и клеток CD8. Некоторые эксперты считают, что обратное соотношение у людей, живущих с ВИЧ, является своего рода двойным ударом со стороны ВИЧ. С одной стороны, он способствует смерти и обновлению Т-клеток, что в итоге снижает уровень клеток CD4. С другой стороны, поскольку из-за вируса иммунная система постоянно борется с воспалением, количество клеток CD8 хронически завышено. Однако большинство экспертов сходятся во мнении, что если с началом АРВ-терапии соотношение Т-клеток увеличивается (т.е. растет число лимфоцитов CD4, а число лимфоцитов CD8 падает), то это является явным признаком того, что медикаментозное лечение работает.

Как выглядят результаты анализа на Т-клетки?

Абсолютное и выраженное в процентах количество Т-клеток обычно указано в разделе «Подмножество лимфоцитов» или «Группа Т-клеток». Именно там перечислены значения различных лимфоцитов вашего организма (CD3+, CD4+ и CD8+), а также другие иммунные клетки. Этот анализ часто называют общим анализом крови. Ниже представлен образец стандартного бланка результатов анализа на Т-клетки.

Определения некоторых терминов, использующихся в анализе на Т-клетки

Абсолютное количество CD3+

Количество CD3+ представляет собой общее число Т-лимфоцитов, которые являются одним из видов белых кровяных телец, созревающих в вилочковой железе. К этим лимфоцитам относятся клетки Т4 и Т8.

Процентная доля CD3

Общее количество Т-лимфоцитов (в том числе клетки Т4 и Т8), выраженное в процентах от общего количества лимфоцитов. Это белые кровяные тельца, которые созревают и находятся в лимфоидных органах тела.

Количество клеток T4

Количество клеток Т4 на кубический миллиметр крови (это примерно капля). Это белые кровяные тельца, которые настраивают иммунную систему на борьбу с болезнью и которые также являются главной мишенью ВИЧ. По мере развития ВИЧ-инфекции количество клеток Т4 снижается с нормального значения в 500−1500 клеток до практически нуля. Когда количество клеток Т4 опускается ниже 200, это означает, что существует повышенный риск развития оппортунистических инфекций, а когда их количество падает ниже 50, риск резко возрастает.

Процентная доля Т4

Количество Т-лимфоцитов, выраженное в процентах от общего количества лимфоцитов. Это белые кровяные тельца, которые созревают и находятся в лимфоидных органах тела. Зачастую показатель процентной доли клеток Т4 является более точным, чем непосредственное исчисление количества лимфоцитов Т4, поскольку он не так сильно изменяется от анализа к анализу.

Количество клеток T8

Количество клеток Т8 на кубический миллиметр крови (это примерно капля). Хотя в бланках большинства анализов они называются супрессорами, на самом деле в их число включены как супрессоры, так и Т-киллеры (см. определения выше). Количество клеток Т8 у людей с ВИЧ, как правило, повышено, но поскольку мало известно о том, почему это так, эти результаты анализа редко используются при принятии решений о лечении.

Процентная доля Т8

Количество лимфоцитов Т8, выраженное в процентах от общего количества лимфоцитов. Это белые кровяные тельца, которые созревают и находятся в лимфоидных органах тела. Зачастую показатель процентной доли клеток Т8 является более точным, чем непосредственное исчисление количества лимфоцитов Т8, поскольку он не так сильно изменяется от анализа к анализу.

Соотношение Т-клеток

Количество клеток Т4, деленное на количество клеток Т8. Поскольку количество клеток Т4 у людей, живущих с ВИЧ, как правило, ниже обычного, а количество клеток Т8 обычно выше, их соотношение, как правило, ниже обычного. Нормальное соотношение, как правило, от 0,9 до 6,0. Как и в случае с клетками Т8, никто точно не знает, что означает пониженное значение. Однако большинство экспертов сходятся во мнении, что если с началом АРВ-терапии соотношение Т-клеток увеличивается (т.е. растет число лимфоцитов Т4, а число лимфоцитов Т8 падает), то это является явным признаком того, что медикаментозное лечение работает.

Новое на сайте

>

Самое популярное